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Abstract

A list of publications of the research performed during the period 7/1/84
- 7/30/89 of thé‘crant AFOSR-84-0233 is provided. Theoretical research has
been conducted on (a) Termolecular Association and Recombination (b) electron-
(excited) atom collisiéns and on (c) analytical solutions of the Time Depend-
ent Debye-Smoluchowski equation for transport influenced reactions. Papers on
all of the above topics have been written up and published as papers, with
reprints sent to AFOSR at various times during the period. The Exact Master
Equation Method, a Variational Principle discovered during the course of this
research, and various approximate treatments are presented as Special
Highlights of this research. In addition, the Appendices include a major

review of Recombination Processes in General.




1. Accomplighments due to AFOSR Support

-~ o ot o

PRINCIPAL INVESTIGATOR: M. R. Flannery
School of P;ysics, Georgia Institute of Technology
Grant AFOSR-84-0233, Period 7/1/84 - 7/30/89

Program Element No. 61102F, Project No. 2301, Task No. A4

1.1 Research Objectives
There are two main objectives to this research program:
(1) Basic formulation and development of the theory of termolecular
association processes
A" «+B  + Mo AB+ M (1)

and

A* + B+ Mo aB" + M (2)

(2) Development of scattering theories for the electron-(excited) atom
collision process

» ™
e+ »e+ A4 (3)

It is important to conduct an exhaustive theoretical investigation of (1)
since not only is (1) of great significance in its o.. .ight to many important
applications (e.g., exciplex lasers, KrF', XeCl‘ etc.) . © also it represents
the simplest three-body chemical reaction. It can therefore be considered as
serving as a'prototype of three body processes in geheral.

During this grant period, this objective has been achieved for gases M at
low densities. In addition to the Exact Master Equation Treatment of (1), a
new Variational Principle has been discovered. This Variational Principle is

applicable not only to ion-ion recombination (1) but to three-body processes

—— —— . .



in general. It represents the first rigorous Variational Principle in
Chemical Physics Collision Processes and is fully documented in §3.2.

Also varlod; simpler but approximate treatments of (1) have been
investigated - the Diffusion, Bottleneck, Strong Collision and Coupled
Nearest-Neighbor Methods. These are discussed fully in §3.

The second main objective is the development of scattering theories for
process (3). Now that some experimental activity is beginning to emerge it is

important to develop theories for electron-(excited) atom collisions. This

objective has been achieved and progress is detailed in Appendix B.

—~———




1.2 Full List of Refereed Publications in Scientific Journals (1984-1989)

1. "lon-lon Recembination at High Ion-Density", M. R. Flannery, J. Phys. B:
Atom. Molec. Phys. 18, 5 (1985).

2. "Selected Bibliography on Atomic Collisions”, M. R. Flannery, E. W.
McDaniel and S. T. Manson, Atomic Data and Nuclear Data Tables 33,
1-148 (1985).

3. "The Rate for Transport-influenced Reactions", M. R, Flannery, J. Phys. B:
Atom. Molec. Phys. 18, L747-L749 (1985).

4. "Basic Expression for Termolecular Recombination and Dissociation", M. R.
Flannery, J. Phys. B: Atom. Molec. Phys. 18, L839-L844 (1985).

5. "Connection Between Microscopic and Thomson Theories of Recombination",
M. R. Flannery, J. Phys. B: Atom. Molec. Phys. 19, L227-L233 (1986).

6. "Orientation and Alignment Parameters for e-He(11S - 31D) Collisions",
M. R. Flannery and E. J. Mansky, J. Phys. B: Atom. Molec. Phys. 20,
L235-L239 (1987).

7. "Macroscopic and Microscopic Perspectives of Termolecular Association of
Atomic Reactants in a Gas", M. R. Flannery, in Recent Studies in Atomic
and Molecular Processes, ed. A. E. Kingston (Plenum Press, London, 1987),
pages 167-191.

8. "Representations of the Transport Equation for Reactive Processes", M. R.
Flannery, J. Phys. B: Atom. Molec. Phys. 20, 4929-4938 (1987).

9. "Diffusional Theory of Termolecular Recombination and Association of
Atomic Species in A Gas", M. R. Flannery, J. Chem. Phys. 87, 6947-6956
(1987).

10. "Termolecular Recombination at Low Gas Density: Strong-Collision Bottle-
neck and Exact Treatments", M. R. Flannery and E. J. Mansky, J. Chem.
Phys. 88, 4228-4241 (1988).

11. "Variational Principle for Termolecular Recombination in a Gas", M. R.
Flannery, J. Chem. Phys. 89, 214-222 (1988).

12. "Termolecular Recombination: Nearest-Neighbor Limit and Uncoupled-
Intermediate-Levels Limit", M. R. Flannery and E. J. Mansky, J. Chem.
Phys. 89, 4086-4091 (1988).

13. "Analytical and Numerical Solutions of the Time-Dependent Debye-
Smoluchowski Equation for Transport-Influenced Reactions", M. R.
Flannery and E. J. Mansky, Chem. Phys. 132, 115-136 (1989).

14. "Recombination Processes", M. R. Flannery in Molecular Processes in
Space: 'Physics of Atoms and Molecules' Series, edited by T. Watanabe,
1. Shimamura, M. Shimizu and Y. Itikawa (Plenum Press, London, 1990).

Six reprints of each of the above publications were submitted to AFOSR as
reprint reports with numbers GIT-85-002, 003, 006, 007, OO4, 010, 012, 011,
015, 016 017 and 018, respectively.




1.3 Chapters in Books

1. "Macroscopic and Microscopic Perspectives of Termolecular Association of
Atomic Reactants in a Gas", in Recent Studies in Atomic and Molecular

Processes, ed. A. E. Kingston (Plenum Press, London, 1987) pages 167-191,

2. "Recombination Processes", in Molecular Processes in Space: 'Physics of
Atoms and Molecules' Series, edited by T. Watanabe, I. Shimamura, M.
Shimizu and Y. Itikawa (Plenum Press, London, 1990).

3. "The Numerical Solution of Partial Differential Equations in Atomic
Scattering Theory", by E. J. Mansky in Proceedings of the Summer School
of Computational Atomic and Nuclear Physics, edited by C. Bottcher, M. R.
Strayer and J. B. McGrory (World Scientific, 1990).

4, "Iterative Solution of Large Linear Systems and Heavy Particle Collisions:
Ion-Ion Recombination", by E. J. Mansky in Proceedings of the Summer

School of Computational Atomic and Nuclear Physics, edited by C. Bottcher,
M. R. Strayer and J. B. McGrory (World Scientific, 1990).

5. "Electron Collision Cross Sections Involving Excited States", by E. J.
Mansky, in Proceedings of the NATO-Advanced Study Institute on "Non-
Equilibrium Processes in Partially Ionized Gases", edited by M. Capitelli
and J. N. Bardsley (Plenum Press, 1990).

Chapter #1 has been published. Six reprints have already been sent to

AFOSR under Reprint Report GIT-85-012.

Chapters #2, 3, 4, 5 are in press. Reprints will be sent when available.

These chapters are included as Appendices A, B, C and D of this report.




1.4 Annual Reports (7/1/84 - 7/30/88)

Full Annual Reports of the research performed during the previous twelve

month period were prepared and submitted to AFOSR. The Performing

Organization Report Numbers for the periods 7/1/84-6/30/85; 7/1/85-6/30/86;

7/1/86-6/30/87 and 7/1/87-7/30/88 were GIT-85-001, GIT-85-008, GIT-85-009 and

GIT-85-014, respectively.

1.5 Funding History

Project AFOSR-84-0233:

7/1/84 -~ 6/30/85: 73,403
7/1/85 - 6/30/86: 70,188
7/1/86 - 6/30/87: 86,730
7/1/87 - 7/30/88: 92,845
8/1/88 - 7/30/89: 99,311

TOTAL: 422,311

1.6 Personnel

1.

[= AN | IR — N 98]

Professor M. R. Flannery - Principal Investigator

Dr. E. J. Mansky - Research Scientist II

Mr.
Mr,
Mr.

Mr,

M.

3

A.

S. Keehan - Graduate Student
. Smith - Graduate Student
Haffad - Graduate Student

. Mekki - Graduate Student




2. Invited and Contributed Papers Presented at Professional Scientific
Conferences (1984-1988)
1984: The following papers were presented at the 37th Annual Gaseous
Electronics Conference, October 9-12, 1984 held at the University of
Colorado. Abstracts were published in Bull. Amer. Phys. Soc. (1985)
and in Annual Report GIT-85-001.
1. "Association/Dissociation in Dense Gases and Adsorption/Desorption on
Surfaces", by M. R. Flannery.

2. M"Analytical and Numerical Solutions of the Time Dependent Debye-
Smoluchowski Equation", by M. R. Flannery and E. J. Mansky.

3. "“Electron-Excited Hydrogen and Helium Collisions", by E. J. Mansky and
M. R. Flannery.

4., "Symmetric Charge-Transfer Cross Sections in Rare Gas (Rg*-Rg) Systems",

by E. J. Mansky and M. R. Flannery.

1985: The following paper was presented at the 38th Annual Gaseous Electron-
ics Conference, October 15-18, 1985, held at the Naval Postgraduate
School, Monterey, California. The abstract was published in Bull.
Amer. Phys. Soc. (1986) and in Annual Report GIT-85-008.

1. ™ariational Principle for Association/Dissociation in Dense Gases", by

M. R. Flannery, was presented at the 38th Annual Gaseous Electronics
Conference, October 15-18, 1985, at the Naval Postgraduate School,

Monterey, California.

1986: The following papers were presented at the 39th Annual Gaseous
Electronics Conference, October 7-10, 1986, held at University of
Wisconsin, Madison, Wisconsin. The abstracts uere published in Bull.

Amer. Phys., Soc. (1987) and in Annual Report GIT-85-009.

- -~ -
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1. "Microscopic Perspective to Termolecular Ion-Molecule Reactions", by
M. R. Flannery.

2. "Detailed Investigation of the Thomson Model of Termolecular Recombina-
tion", by E. J. Mansky and M. R. Flannery.

An invited lecture entitled:

3. "Termolecular Association in Gases", by M. R. Flannery was presented at
a Conference held in Honor of Sir David Bates' 70th Birthday at Queen's
University, Belfast, November 17 and 18, 1986.

The lecture was published as a Chapter in the book "Recent Studies in

Atomic and Molecular Processes", edited by A. E. Kingston (Plenum Press,

New York, 1987).

1987: Invited and Contributed Papers

1. An invited paper entitled "Termolecular Recombination", by M. R. Flannery,
was presented at the 40th Annual Gaseous Electronics Conference, Atlanta,
held at Georgia Institute of Technology, Georgia, Oct. 13-16, 1987. It
is published in Bull. Amer. Phys. Soc. 33, $2 (1988) p. 122.

2. A contributed paper entitled "Orientation and Alignment Parameters for

e+ He (2735) 2 e « He (3113p, 3'13

P, 3 '°D) Collisions", by E. J. Mansky and
M. R. Flannery, was presented at the 40th Annual Gaseous Electronics
Conference, Atlanta, held at Georgia Institute of Technology, Georgia,
Oct. 13-16, 1987. It is published in Bull. Amer. Phys. Soc. 33, $2 (1988)
p. U1,

3. A contributed paper entitled "Termolecular Recombination and Electrical
Networks", by M. R. Flannery and E. J. Mansk& was presented at the 1988
Spring Meeting of the American Physical Society (APS) in conjunction with
the Annual Meeting of the APS Division of Atomic and Molecular and

Optical Physics held at Baltimore, Maryland, April 18-21 (1988).




The abstracts were included in the Annual Report GIT-85-014.

1988:

(a)

(b)

(c)

(d)

A long paper entitled "Multichannel Eikonal Theory of Electron-(Excited)

Atom Collisions", by M. R, Flannery and a contributed paper entitled

"Integral and Differential Cross Sections for e-He (21’35) Collisions",
by E. J. Mansky and M. R. Flannery were presented at the 41st Annual
Gaseous Electronics Conference held at University of Minnesota,
Minneapolis, Minnesota, Oct. 18-21, 1988. The abstracts are published in
Bull. Amer. Phys. Soc. 34, #2 (1989) p. 302 and p. 315.

Two contributed papers entitled "The Poincare Sphere for the 21P, 31P and

310 States of Helium", by E. J. Mansky and M. R. Flannery and "Orienta-
tion and Alignment Parameters for e-H(1s»3p,3d) Collisions", by E. J.
Mansky were presented at the 20th Annual Meeting of the (APS) Division
of Atomic, Molecular and Optical Physics held at the University of
Windsor, Windsor, Ontario, May 17-19, 1989. The abstracts are published
in Bull. Amer. Phys. Soc. 34, #5 (1989) p. 1371 and p. 1407.

An invited paper entitled "Electron Cross Sections Involving Excited
States", by E. J. Mansky was presented to the NATO-Advanced Study
Institute, "Non-Equilibrium Processes in Partially Ionized Gases" held
at Maratea, Italy, June 4-17, 1987. It is published as a Chapter in the
Book, listed in §1.2,

Two invited papers entitled "The Numerical Solution of Partial Differen-
tial Equations in Atomic Scattering Theory", and "Iterative Solutions in
Large Linear Systems and Heavy Particle Collisions", by E. J. Mansky
were presented to the Summer School of Computational Atomic and Nuclear
Physics held at University of the South, Sewanee, Tennessee, June 16-

July 7, 1989. They are published as Chapters in the Book, listed in




(e)

§1.3.
A contributed paper entitled "Stokes Parameter Analysis of the 31D State

of Helium", b~ €. J. Mansky and M. R. Flannery was delivered to 16th
International Conference on the Physics of Electronic and Atomic

Collisions held at New York, July 26 - Aug. 1, 1989.
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3. Special Highlights

In a series of papers, #9 - #12 of the list in % 1.1, the Termolecular
Recombination Proces;

A"+ B  + Mo AB + M (1)
was explored in depth. Exact treatments based on a Master Equation and on a
New Variational Principle discovered by M. R. Flannery were developed and
applied. Various approximate treatments as (a) The Diffusional Theory (b)
Strong Collision and Bottleneck Models and (c) a Coupled Nearest-Neighbor
Limit and Uncoupled Intermediate Levels Limits were also provided and compared
with experiment. In order to explain the research fully, the resulting
publications in J. Chem. Phys. are reproduced in the following Sections 3.1 -
3.4,

In §3.1, the Exact Treatment is discussed together with the Strong
Collision and Bottleneck Methods.

In 33.2, the New Variational Principle is developed and applied.

In 83.3, the Diffusional Treatment is presented.

In §3.4, methods of Coupled Nearest-Neighbor and Uncoupled Intermediate
Levels are presented and applied.

Since the Termolecular Process (1) is the simplest type of three-body
Chemical Process, it is essential to understand it in required depth, not only
because of its great significance in general applications but also because it
serves as a prototype for three-body reactions. In the following sections,
attempt is made to provide an exhaustive understanding.

Also a major-revieu of Recombination Processes in General is included in

Appendix A.

11




3.1 Exact Treatment, Strong Collision and Bottleneck Treatments.
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Termolecular recombination at low gas donslty- Strong collision, bottieneck,

and exact treatments
M. R. Flannery and E. J. Mansky

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
(Received 23 November 1987; accepted 24 December 1987)

On introducing the probabilities for association as a function of internal separation R and
internal energy E of the associating (A~B) species the strong collision model is thoroughly
investigated and compared, as a case study, with the exact treatment of termolcular ion-ion
recombination at low gas densities. A bottleneck model is also investigated. Analytical
expressions for the one way equilibrium energy-change rates at fixed R are provided in the

Appendix.

1. INTRODUCTION
The theory of termolecular ion—ion recombination,

A+B+M€=AB+M (LY

between positive and negative atomic ions A and B in a low
density gas thermal M is now well established. -5 The distri-
bution #, (E,,f) per unit interval dE, of recombining pairs
AB with internal energy E, a time ¢ is governed by the colli-
sional input—output Master equation'3:

on
n,(E,.t) = 37' —~F,

= —J' [",'Vi/—n,Vﬁ]dE,
-0
a
= —EE—J‘(Ei'l), (1'2)

where v, is the frequency per unit interval dE, for E, - E,
transitions by collisions between AB and M, where J, is the
upward current in energy space past level E, and where — D
is the energy of the lowest vibrational level of AB relative to
the dissociation limit taken as zero energy. For dissociated
pairs with E; >0, F, is the net flux per unit interval dE, of
(contracting) AB pairs generated with energy £, at infinite
internal separation R. For bound pairs with E, <0, F, is
zero. The net rate for association is*

dn
R* =f ( ') dE,
n i 7

=aN, (DONg (1) — kn, (1), (1.3)

where P7 is the probability that E, pairs are collisionally
connected to the product channel, i.c., have been stabilized
against dissociative collisions with thermal M. The effective
two-body rate constant for the association of A and B with
(cm~?) concentrations N, (¢) and Ny(f) is @ (cm®s™ "),
and k (s™') is the frequency for dissociation of those tightly
bound pairs of concentration », (), which are considered to
be fully associated with energies £, within a block . of low
lying fully stabilized levels in a range — S>E,> — D within
which the stabilization probability P¥is calculated to be uni-
ty. When the quasi-steady-state (QSS) condition dn,/dt = 0
is satisfied for pairs in a block & of highly excited levels in
the energy range 05E> —~ S between the dissociation limit

4228 J. Chem. Phys. 88 (7), 1 April 1908

0021-9606/88/074228-14302.10
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at zero energy and level — S the rate (1.3) reduces to*

=S (dn
Rnaf (—‘dE
® ~-p \ dt !

-[ ram= [ (G)e

= ~J(~E (14)

for a steady-state (dn,/dt = 0) distribution of pairs in the
block € of fully dissociated states in the energy range
0<E< o0, over which the stabilization probability P $ vanish-
es. Therate (1.3) therefore reduces* under QSS to the down-
ward current — J( — E,t) of pairs past energy level — E in
bound block &.

At low gas densities the expansion*
n,(E,2) NA(ON (D
t) =———=PP E, —prr—
vi(e) AE) C(E) A
+PS(E) ["‘n."’] (1.52)
2PP(E)y.(8) + PS(E)y.(1) (1.5b)

permits separation of variables E, and ¢in the collisional part
of Eq.(1.2). Here ,, 7., and ¥, are the various time-depen-
dent distributions of states in blocks &, ¢, and % normal-
ized to their respective equilibrium values #,,N, 5, and n,.
For & states, P{and P? = | — P{ are the probabilities that
state { is collisionally connected to the sink .# and to the
source & . For & states at low gas densities P2, the collision
survival probability is unity when equilibrium conditions in
£, and R can be assumed in the collision part of Eq. (1.2).
When Eq. (1.5) is inserted the collisional part of Eq. (1.2),
then Eqs. (1.4) and (1.3) yield the expressions*

aﬁ.\ﬁn =-j(-E)=

o -8
=.f dE, f (P$ - P)C, dE, (1.6)
-5 -b

for the rate coefficients @ and k in Eq. (1.1). The collision
kernel Cy; is the collisional rate /,v, (cm® s~ ') per unit ele-
ment dE, dE, for E, — E, transitions and varies linearly with
the gas density N. At low N, a is linear in N'so that 2° 2 ar
required only to zero order in N. The net downward time-
dependent collisional current across arbitrary leve! — £ in
block # separates as

© 1988 American institute of Physics




—Jj( = EY[Na()No/NaNa
—n,(t)/A,] [¢R))]

which under conditions of full thermodynamic equlibrium
tends therefore to zero.

* The multicolfisional stochastic aspect of the theory be-
comes apparent by correctly identifying the (time-indepen-
dent and density-independent) stabilization probability as

PS(E) = UAD (rvy) Pde,]/[f-Dn,vvdE,]
(1.82)

which is the fraction of all collisions which result in associ-
ation. Equation (1.8a) is consistent with the concept of a
Markov element chain, and when rewritten in the form of an
integral equation

-D -0

is seen, after substituting Eq. (1.5b) in Eq. (1.2), to be
equivalent to the assumption of a quasi-steady-state (QSS)
E, distribution of pairs with energy within the highly excited
block &.

The rate (1.6) holds for E=0and E =S to give, re-

spectively,
aN Ny = —j(0) =f dlz,f C,PSdE, = ki,
0 -D
(1.9)

as the collisional rate from the fully dissociated states i to
bound states f which are then collisionally stabilized with
probability P3, and
-5 ™
aN Ny =j(—85) = J' dE, f C,P2dE, = ki,
-D -S
. (1.10)

-J( _—E.‘) =

(1.8b)

as the collisional rate from the fully associated states i to

levels f which are then collisionally disrupted with probabil-
ity P 2. Note that Eq. (1.9) or Eq. (1.6) is the QSS rate for
association of a full equilibrium concentration N, ¥, of dis-
sociated pairs into a perfectly absorbing sink .¥ maintained
at zero population, i.e., . =1 and 7, =0 in Eq. (1.5b).
Similarly Eq. (1.10) is the QSS rate for dissociation which
would result from an equilibrium population 7, of associat-
ed 7 pairs being dissociated into states ¥ maintained at
zero population, i.e., ¥, = O and 7, = 1 in Eq. (1.5b).

In this paper two simplifications to the above exact
treatment at low gas densities NV are investigated in detail. In
the strong collision and bottleneck models, the probabilities
P7 are preassigned without recourse to Eq. (1.8). The first
mode] assumes that P ¥ for all bound pairs with internal sepa-
ration R is unity for R within the range OCR<R 1, where Ry
is some preassigned radius, outside which Py is zero. In this
strong coilision (or Thomson-style’) model, bound pairs
with R<R are therefore considered to be fully associated
and those with R> R ; cannot be stabilized. In the bottleneck
model, P for bound pairs at all accessible R is unity for
E,KE*, and is zero for E>E* and E * is a (bound) energy
level within ~2kT below the dissociation limit and past
which the one-way equilibrium rate is a minimum which

M. R. Flannery and E. J. Mansky: Termolecular recombination

therefore acts as a bottleneck to the current. The level £ is,
in effect, a transition state. Each model therefore subdivides
the two dimensional ( R,E) space into regions of some phys-
ical signficance. The Thomson model has previously been
addressed via a Monte Carlo simulation method® and indir-
ectly by an analytical approach® based on collisional deacti-
vation of dissociated pairs to levels lower than various bound
levels. A more exhaustive and detailed investigation is un-
dertaken here. The bottieneck model has aiso received some
previous consideration. '

Not only will these models elucidate interesting dynam-
ics underlying the recombination mechanism (1.1) at low
gas densities N, but subsequent modification to cover higher
gas densities proves quite valuable towards a study (in prog-
ress) of the variation of the recombination rate a with gas
density N.

il. THEORY

The detailed investigation of the strong-collision model
requires the generalization of the Master equation (1.2) to
(R,E) space and use of the frequencies v,(R) for E, - E,
transitions per unit interval d R dE, by collisions between M
and the pair AB at fixed internal separation R. The appropri-
ate input-output Master equation satisfied by the distribu-
tion n, (R) of (A-B) pairs per unit interval dRJE, has
been shown‘° to be the continuity equation

R

- 2
n, (RO = a: +o aa [RY#(R) s,

- _f (MR, (R~ (RIvs (R) JdE,
V(R)

=— Sy (R)dE,,
V(R)

where j /(R) is the net cutward transport current of pairs
expanding at R, where S, is the net two level collisional-
absorption rate, and where V(R) is the energy of interaction
between A and B. Integration of Eq. (2.1) over all accessible
R yields the customary Master equation ( 1.2) for dissociat-
ed and bound states.

2.1)

A. Rates and stabilization probabilities
The steady-state rate (1.4), with the aid of Eq. (2.1), is

RA) = _f lim [47R%jH(R;))dE,

I dE, f dR Sy(R)dE, 2.2)
V(R)

which cither is the net inward flux of dissociated pairs con-
tracting by transport across a sphere of infinite radius R - or
is the net collisional downflow across the dissociation limit
atE, =0.

Now assume (a) that there is a finite radius R, for
which all E, pairs with R> R are in energy equilibrium at
each R, i.e.,

n(R) n(R)
" 0
where
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A(R) = f n,(R)IE (2.3b)
V(R)
is the concentration per unit interval 4 R of all pairs with DISSOCIA
separation R. Thus S, is Eq. (2.2) vanishes for R>Rr to TATES
yield
I Ry
RAW) =f dE,f dkf S,RYE,  (2.4)
° ° vk HIGHLY EXCITED
which is the steady-state rate of association of dissociated STATES
pairs with R<R .
Association of Ry complex: At low gas densities N, the vt
distribution », (R) is independent of N so that the collision
term S, remains linear in N. On the right-hand side of Eq.  AssocAIED |
(2.1) n,(R) is equilibrium with respect to R, so that D aTaTES

",’(R’Ej) _ ﬁi(ui)

= , 2.5
" (E)  A(E,) (2.32)
where the distribution per unit interval dE, is
R;
n(E,) = I 7, (R)dR (2.5b)
0

and R, is the classical turning point of E; motion. The sepa-
ration (1.5) is then valid so that Eq. (2.4) yields

3 R
aﬁA175=J‘ dE,f rdnf C,(RYPSE, = k.3,
0 0 V(R)
(2.6)

for the rate of association of dissociated pairs in the complex
of radius R . The required one-way equilibrium rate

C,/(R) = ,(R)v,(R) = C4(R) 27

at each R is related to the R-averaged rate C;; previously
used' in Eq. (1.6) by

R, R,
Cr=hyv,= L A (R)v,(R)dR = L C,(R)dR, (2.8)

where R, is the lesser of the two outermost turning points R,
and R, associated with levels E; and E,, of which one at least
is bound. Detailed expressions for C,(R) are presented in
the Appendix.

Strong collision rate: In addition to Eq. (2.3a), assume
(b) that all bound states f with R<R - are fully stabilized,
ie.,

P}=1, R<R;, E0 2.9)
so that the required strong collision rate is

— - Ry
a(k,)NAN.=f dE, J' dR r CARVE, (210)
(] 0 V(R)

(

which is the one-way equilibrium rate that dissociated pairs
with R< R, are collisionally deexcited across the dissocia-
tion limit. The “complex’ assumption (2.3a) is equivalent
either to assigning in Eq. (2.2) zero probability P} =0 for
R>R; and E(<0, i.c., to the overall neglect of association or
to inclusion in Eq. (2.4) of upward equilibrating transitions
past E, =0 for R>Ry. The strong-collision assumption
(2.9) is equivalent to the neglect in Eq. (2.4) of the rate
5n(R)v,(R)AE, for upward redissociation of pairs with
R<Ry.

The physical basis to the two assumptions (2.3) and
(2.9) can be illustrated by Fig. 1. Bound states at large R

FIG. 1. Schematic basis for strong collisions within an assumed complex of
radius R,. A-B relative motion in circular and highly elliptical (large R)
orbits with speeds v and v’ before and after ion-neutral collision.

arise from highly elliptical Coulomb orbits with low angular
momenta where the possible velocity vectors for relative
{A-B) motion lie within a narrowly focused region. Upon
collision with the gas, the velocity vector is mainly deflected
into directions outside this region so that the post-collision
velocity vector cannot be consistent with bound states at
large R. Collisional dissociation of these highly excited levels
atlarge R is therefore most likely to occur,® and stabilization
of bound levels £ is not viable so that P (R>R;) =0in
keeping with assumption (2.3) underlying complex forma-
tion for association to proceed.

For intermediate R, however, the post-collision velocity
can be accomodated by many angular-momentum bound
orbits, more final angular momentum levels are accessible at
these R~ ¢?/2|E,|, the radius of the circular orbit, and the
number of accessible orbits at a given R increase with in-
creasing binding. Collisional deexcitation of highly excited
levels at smaller R therefore tends to occur and pairs with
R< Ry in all bound levels can be fully stabilized, in keeping
with the strong-collision assumption (2.9).

The averaged kernels (2.8) have been previously de-
rived for symmetrical resonance charge transfer,' hard-
sphere,? and polarization® binary collisions between either
ion A or B and the gas M. The R-dependent one-way equilib-
rium kernels C;.(R) are not only required for this sudy but
also for ongoing investigations of the nonlinear variation of
a with gas density N. They are provided in the Appendix asa
comprehensive package for present and future use and refer-
ence.

The exact low density rate (1.6) and the strong-collision
rate (2.10) reduce to a sum®'' of rates a, and ay, each
arising from A-M and B-M binary collisions, respectively,
and a, can be presented'~>-? as a universal function [cf. Eq.
(AS55)] of the mass parameter

gz MM,
M, (M, +My +M,)'
where M, , My, and M, are the masses of the reacting atom-

ic ions and gas atoms, respectively.
Calculation of Eq. (1.6), the exact low density rate a;,

(2.11)
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aad of the variation of the strong collision rate (2.10) with
Ry can now be performed. For the exact rate (1.6), highly
accurate converged solutions P of the integral equation
(1.6), discretized ss in Ref. 3 into an equivalent set of 100
algebruic e havedbeen obtained. Previous results'~
were based on 36 coupled equations at most. Convergence of
a to within 0.5% is found to be much more rapid for inter-
mediate mass parameters g ( ~ 1/3) than for small and large
a which required 100 coupled equations for convergent
rates.?

In contrast to ion-atom association where the radius R -
may, with some justification, be identified with the location
of the centrifugal barrier, no such assignment for ion-ion
recombination (without any centrifugal barrier) exists, al-
though Thomson’ suggested R, = 2¢?/3kT where the rela-
tive kinetic energy (3kT + ¢’/R) is reduced to {kT upon
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collision. Hence bound pairs with E; = ¢*(1/Rr — 1/R)<0
can be formed within R<R,.

The variation with Ry of the ratio a(R,)/a; for the
recombination of equal-mass ions via symmetrical reso-
nance charge-transfer (CX), polarization (POL), and
hard-sphere (HS) collisions with an equal-mass gas (a = 1/
3) is displayed in Fig. 2. The ratio is unity for R » in the range
(0.48-0.55) (€*/kT), in good agreement with Thomson's
suggestion. The neglect in Eq. (2.6) of a positive contribu-
tion to association from possible collisional stabilization of
those bound levels with R>R; =0.5 (£/kT) is effectively
offset by the neglect in Eq. (2.10) via Eq. (2.9) of a negative
contribution arising from redissociation of those bound
states with R<R .

The strong collision model is therefore capable of high
accuracy provided Ry can be preassigned; realistic assign-
ment 10 R, for recombination being only feasible? after the
exact treatment is performed! The radius R r, once assigned,
may however be adopted in models under development for
variation of a with gas density V.

As R becomes large the rate (2.10) however tends rap-
idly to

L —
L1 !
]
(] o
> o
€ |
'5'2__
-
L
, e T
() 0.2 0.4 0.8 0.8 10

(R, R,

FIG. 2. R, variation of a( R ), the strong-collision rate (2.10) normalized
{0 ag, the exact rute (1.6), for equal-mass components and model ion—
neutral interactions (POL.: polarization; HS: hard sphere; CX: symmetrical
resonance charge transfer). Arrows indicate where a(R ) = a, for POL
and CX in units of R = ¢*/kT.

{(-e/xT)

FIG. 3. One-way equilibrium rates agy ( — E), Eq. (2.13), normalized to
ag, the exact rate (1.6), across energy level — E for model ion-neutral
interactions POL, HS, and CX.

a(R,-—-oo)I-VAX’.-:J. dE,J'aDC‘,dE, (2.12)
0 -

which is of course infinite owing to the divergence, as E, -0, |
of the equilibrium density 7, (E,) ~ |E,| ~>'exp( — E,/kT)
of Coulomb bound states per unit interval dE,. As Ry — o,
the physical basis for adopting the one-way equilibrium rate
(2.10) becomes untenable since bound states with large R -
are more readily redissociated (cf. Fig. 1). Upward colli-
sions past the dissociation limit must therefore be included
for large R ;. The strong collision assumption is therefore no

~ longer justified for large R .

This divergence can be eliminated not only by maintain-
ing Ry finite but also by considering the one-way equilibri-
um rate

® -~ K
agn( — EYN, N, =J dE,J C,dE,  (2.13)
-£ -D

across any bound level — E in block &. Figure 3 illustrates
that this rate decreases from the infinite limit (2.12) at
E =0 to a pronounced minimum at an energy £* = 2kT
below the dissociation limit. Since Eq. (2.13) is an upper
limit to the exact rate by taking PS(E,> — E) and
PJ(E; < — E) within Eq. (1.6) to be zero and unity, respec-
tively, then its minimum value apy ( — £*) is the least up-
per limit and is the one-way rate past the effective bottleneck
to the cureat at — E* which, in effect, is a transition state.
Although this bottleneck model (2.13) is physically differ-
ent from the previous strong collision model (2.10), it is
worth noting that E * = 2kT corresponds to a turning point
R of }(&*/kT) for which the strong collision model is effec-
tively exact (cf. Fig. 2). Figure 3 shows that the bottleneck
result is however a factor of 1.9-2.5 times larger than the
exact rate ag. In contrast to the strong-collision model
(2.10), Eq. (2.13) is always an upper limit since in order to
obtain the bottleneck result (2.13) from Eq. (1.6), the ne-
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glected terms cannot cancel since they always remain nega-
tive. This search for the least upper limit to the one-way
equilibrium rate across transition state E * is identical in
principle to the variational phase-space theory of Keck'* as
applied to termolecular ioa—ion recombination. The strong
collision ( Fig. 2) ind bottleneck pictures ( Fig. 3) have been
previously displayed in a recent review'’; the present CX
results in Fig. 2 correct those in Ref. 12.

B. Association probabilities

To obtain these, the low density rate (2.6) for associ-
ation of dissociated pairs in the R, complex may also be
expressed with the aid of Eq. (2.2) as

a(RpINAFy = L [47RY - (Rp)|PA(R1)EE,,
(2.14)

the net inward transport rate across the R sphere where

PYRy) = [A7 (Ry) =0 (R /A7 (Rp)  (2.15)
now specifies the desired probability that fully dissociated E,
pairs which are originally contracting at R, will associate
within the spherical complex of radius R ;. The distribution
of dissociated pairs contracting at Ry is #,” (R;), the equi-
librium value characteristic of low gas densities N, and is a
nonequilibrium value 2,* (R;) for pairs expanding at R,.
The one-way incident current at temperature T and perti-
nent to low N is the one-way equilibrium current

i (R)AE, =}, (R)y,(R)AE, = 1, (R)v,(R)dE, (2.16)
_1( &T

4\ 7™M,y

X (E,/kT)exp( — E,/kT)d(E,/kT), (2.17)

where M , 5 is the reduced mass of the pair (A-B) and where

| Vg F
) NaNa[1 - V(RV/E,]

A, is &+ + A, . By direct comparison of Eqs. (2.14) and.

(2.16) the exact association probability of fully dissociated
pairs within R<R at low gas densities is
P!™(E,>O0R;) = [7R}A,(R7)v,(Ry) ] -

R
x I "dR f C,(R)PH(R)IE,
0 IR)

(2.18)
which increases linearly with gas density N via C,,. The sta-
bilization probabilities P} which are solutions of Eq. (1.8)
do not vary with N. As R, — =, Eq. (2.18) in Eq. (2.14)
yields

a,(E,>O,Rr) =aR 'zr’."(RT)UI(Rr)P;“(E‘ >01R1')’

(2.19)
the rate per unit interval 4E, for association of dissociated E,
pairs with R<R;. As R, — «, Eq. (2.19) saturates to the

exact partial rate.
The association rate per unit JE, for the highly excited
bound E, pairs in block & of the complex of radius R, is -

a,(E, <ORy) = [#R 34, (Rr)v,(Ry) | PAE, <ORy)

R
=L "dR [f C,(RIPSdE,
1443

- P} f c,(ma,] . (2.20)
V(R)

As R, — R,, the outermost turning point of E, motion where
|E,| = |V(R,)|, this rate (2.20) vanishes owing to the QSS
requirement ( 1.8) of Zero net gain of all E, pairs with R<R,
inblock &, a condition on which calculation of the stabiliza-
tion probabilities P is based.

Strong collision and Thomson probabilities: The corre-
sponding strong-collision association probability P57 is giv-
en by Eq. (2.18) with P} = 1, i.e., by the probability

PT(E,>0Ry) = ["R %’ﬁl(kf)vl(kr)]-l

x J: 'dnf C,R)E, (221)
nry

for direct collisional formation of bound levels from a disso-
ciated state of energy E,. It overestimates the exact associ-
ation probability by
PM®=PT(R;) ~ P?*(Ry)
= [”'R A, (R)v,(Ry) ] -t

i _
xJ' "R f C,(R)P2dE, 2.22)
0 R

which in fact is the probability P 72 for subsequent redisso-
ciation of bound pairs formed with R<R, and which is in-
herently neglected by the strong-collision model. On defin-
ing the free path length* A,(R) for continuum—bound
transitions in A-M collisions during the (A-B) trajectory
by

A7 (R)=[v,(R)/y]

- [ f ] c,,(x)da,]/[ﬁ,(mu,(k)] (2.23)
then the suong-eou:;i;n probability (2.21) is redefined asin
TRY[1 - V(R;VE)PT(Ry)

- L" [1 = V(R)/E,Jd R/AR). (224)
The corresponding strong collision rate (2.14) is now
ar(Ry) = 4[: G(E)dE,

Ry
xf_ v,[1 — V(R)/E,)}"*dR/A,(R),
0
(2.25)
where the (Boltzmann) distribution of internal energies
(E,>0) is
G(E,)dE, =% (E,/kT)'* exp( — E,/kT)d(E,/kT).
T

(2.26)

When 4, is assumed to be 4, independent of R and £, as
for hard-sphere collisions, and when V(R) is neglected, Eq.
(2.24) yields

the Thomson probability’ for (A-M) collisions during recti-
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linear A-B relative motion within R<R. Also Eq. (2.25)
yields
ar(Ry) =R ¥ (B/4) (2.28)

the Thomson ratg’ in terms of U, the mean (A~B) refative
speed (8kT /oM ,5)"/2. All of the rates calculated here and
previously’~> are however normalized (cf. Appendix) to

~ 4 7(2 E\[KkT)"?

=37 (3 kT) (MA,) ’ (2.29)
where the root-mean-square speed rather than 7 has been
customarily used, and where {(e*/kT) is assigned for R,.
Unless otherwise noted, all of the following calculations in
the following sections (II C-II E) refer to symmetrical reso-
nance charge~transfer ion-neutral collisions involving
equal-mass species M, = M, in an equal mass gas.

C. Calculated stabiltzation and disruption probabilities,
and partisi rates

The stabilization and disruption probabilities P7 snd
PP =1~ P} are the stochastic probabilities that (A-B)
pairs initialy in a bound level £, of block &, will cither
become fully associated or disrupted by multicollisions with
the thermal gas. For a quasi-steady-state distribution of
bound pairs in block &, P§ are numerical solutions of the
integral equation (1.8) and are illustrated in Fig. 4. The
probabilities P increase from zero at the dissociation limit
to near unity for binding energy |E/| >5kT. Note that P§
=1/2= P} for E,~ — 2kT, the bottleneck energy E* (cf.
Fig. 3) based on the assumption in Eq. (2.13) that P} is zero
for E>E* and unity for E,< — E*. The probabilities P2
= (1 - P}) for multistep collisional disruption of these
pairs decrease fairly rapidly with binding energy | E | and are
negligible for binding |E | >$ kT Since block % of fully sta-
bilized levels is characterized by unit 27, Fig. 4 suggests that
the block #* is compased of all levels with binding 2 10kT.
Since the deexcitation frequency v, from the continvum di-
rectly to the strongly bound levels with E, S — 10kT of
block .7 is vanishingly small, association given by Eq. (1.9)
therefore occurs primasrily via multistep transitions to the
block # of levels E, within the range 0> E, > ~ 10kT, which
are then connected stochastically with probability P3 to the
fully associated block .7 via a Markov-element chain ®
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FIG. 4. Siadilization sad disruption probabilities, solutions of Eq. (1.8) for
squal mses components.
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FIG. 5. Partial rates (2.30n) per final bound level — E, normalized to &y,
the Thomsoa rate (2.29).

Figure 5 for the partial rate
a(E)N Ny = (L Cy dE,) PH(E,)=C/P] (2.300)

normalized to &, which is the contribution per unit normal-
ized interval (dE,/kT) from level E, to the full association
rate of all dissociated pairs, illustrates that levels in general
within kT of the dissociation limit, are mainly responsible
for the association process. This is less so however for CX
since deactivation by symmetrical resonance charge transfer
involves larger energy reductions'~? than for the case of po-
larization and hard-sphere collisions. The very rapid in-
crease of a(E,) from zero at E, = 0, not shown in Fig. 5,
and subsequent decrease arises from the combination of the
monotonic increase from zero of the stabilization probabili-
ties P7 and the rapid decrease from infinity of C;, the colli-
sional rate from the continuum to a bound level f.
Figure 6 for the £, -partial contribution
A(E)N, Ny = f N C,P;dE, (2.300)
to the exact rate for association of dissociated E, pairs per
unit interval (dE,/kT) illustrates a monotonic increase as
E, >0 approaches the dissociated limit at zero energy. This
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FIG. 6 Pyrtia) rate (2.30b) per initial continuum state E,, normalized to
&5, the Thomson rate (2.29).
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FIG. 7. Partial strong continuum rate a(Ry;£, ), Eq. (2.31), per initial
continuum state E,, normalized to &, the Thomson rate (2.29). Exact
normalized partial rates are indicated by straight lines. E,/kT = 0,0.26,
0.529, 0.734, and 1.646 ordered sequentially from top to bottom.

is expected since C, for a given bound level E, increases

quite rapidly as the energy difference (E; — E;) is reduced.

The full rate (1.9) is the E; -integrated area of Fig. 6.
Variations of the partial E; contributions
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energy £ = 0. Probabilities are normalized to the Thomson probabitity P,
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Ry
az(k,;s,)ii',\il,=J:1 dl!J: C,R)dE, (2.31)
R)

to the strong-collision rate (2.10) with R, are displayed in
Fig. 7. They intersect the corresponding exact partial rates
(2.31a), represented as straight lines at R, in the range
0.5R, <R;<0.6R, a result consistent with the £, -integrated
rates of Fig. 2 where R ~0.55R, .

D. R variation of caiculsted probabiiities for muitistep
association

Figure 8 illustrates variation with R, of P/%, the exact
probability (2.18) for multistep association via bound levels
of E; = 0 pairs with R<Rr, and of P;7, the corresponding
strong-collision probability (2.21). The probabilities are
normalized to P, the Thomson probability (2.27). Also
shown [Fig. 8(a)] is P*°/ Py, the normalized probability
(2.22) for redissociation of the bound pairs so formed with
R<Ry. Figure 8(a) emphasizes that association dominates
redissociation within smaller R, € (¢?/kt) =R, so that the
exact and strong probabilities P 7% and P 7, respectively, are
equal. Figure 8(b) emphasizes that pairs within larger
Rr>R, are mainly redissociated. The strongcollmon
probability P;T accurately represents either P#%, the associ-
ation probability at small R,, or P2, the redissociation
probability at larger R, thereby providing the actual phys-
ical basis for Fig. 1.

Within radius R, ~0.45R,, there is as much associ-
ation as redissociation [Fig. 8(a)] so that the strong rate is
twice the exact rate for association of pairs with R<0.45R, .
The contribution of pairs with R>0.45R, to the exact rate is
however equal to the contribution from R<0.45R,, so that
the exact rate form all R and the strong rate from R<0.45R,
are fortuitously equal. This balance is the essential basis for
agreement with the strong-collision model as previously il-
lustrated by Figs. 2 and 7. Figure 8(a) also suggests that the
Ry variation of the strong collision probability (2.21) is rep-
resented fairly well by P4, the Thomson result (2.27), over
the region R<R, important to association, although the
magnitude is overestimated by a factor of 52.5.

As the energy E, of the dissociated pairs increases from
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F1G. 9. As in Fig. 8 but for various continuum energies (E /kT = 0,0.529,
1.09, 1.56, and 4.7 ordered sequentially from top to bottom).
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1.0"']"!']’r"]l'lr'rl-

FolR )/ &y

F (R E) /&,

FIG. 10. R dependence of d d F, and upward F, normalized flux,
Eqgs. (2.32) and (2.33), upper and lower curves of each set, across various
continuum energies {£/kT =0, 0.529, 1.09, 1.56, and 4.7, (a)-(e¢), re-
spectively ] and across various bound energies [ ~ £/kT =0, 0.529, 1.09,
1.56, and 4.7, (3)-(e), respectively] in (b).

zero, Fig. 9 shows that the probabilities for association of
these pairs and for subsequent redissociation decreases mon-
otonically with E, and that the R ; region over which associ-
ation exceeds redissociation becomes somewhat smaller. As
before, the strong collision probability P7, the sum (P75

+ P 9) of each pair of curves, tends to P7£ at small Ry, to
P*? at large R;. The sum is fairly constant for the range
0.2R,<Rr<R,, as in Fig. 8(a).

E. (R,E) variation of caiculated flux and rates

In Figs. 10(a) and 10(b) are shown the variation with R
of the downward differential flux (dF = FdR),

- E
F,(RE) = 4nR *J' (1 = PS)dE, f C,(RVE,
K V(R)

(2.32)
per unit interval 4R across various continuum [Fig. 10(a) ]
and bound [Fig. 10(b) ] energy levels E, and of the corre-
sponding upward flux

@ £
F.(R:E) = 4R *J' dE, f (1 = PHC,(RIEE,
z vR)
(2.33)

‘vvvﬁ'fvfr"-vvlvvv

~N

w
R ML

10(FIR; E) - F (RE)/ &;

-

MU B O U YR U S U Y

o 05 1.0 15 20
(R/R)

FIG. 11. R dependence of the net fux (£, ~ F, ) downward across various
continuum ( E/kT = 0,0.529, 1.09, 1.36; (¢)-(h), respectively ] and bound
[ = E£/kT = 0.26, 0.529, 1.09, 1.56; (d)-(a), respectively] energy levels.

with both normalized to the Thomson rate (2.29). For small
R<0.3R,, F, increases more rapidly from zero and remains
greaterforall R than F, whicheventually tends atlarge R to
F, from below. This limiting behavior at small and large R
also elucidate the physical basis for the separate R regions in
Fig. 1. For bound levels [Fig. 10(b) ], both F, and ¥, across
state (R,E) increase from zero te a maximum and then de-
crease as expected to zero at the turning points associated
with energy E.

Variation with R in Fig. 11 of F(R), the net differential
flux (F, — F,) across both bound and continuum energy
levels E exhibits a peak at roughly the same R ~ (0.2-0.3) R,
for all E. As E decreases through the continuum the flux,
and R-integrated flux, f§ F(R)dR, increases. For bound E,
the net flux increases and then decreases to zero at the classi-
cal turning points R; = €*/|E|. The net R-integrated flux
across the highly excited bound levels remains constant, i.c.,
the area under each of the bound curves remains constant in
accord with the QSS condition [dn, (¢)/dt = 0} in block #,
50 that the flux becomes constricted into more restricted R
space as £ decreases through the bound levels. The resulting
increase exhibited in Fig. 11 of the net differential flux as E
decreases is therefore expected. The E variation of the nor-
malized R-integrated net flux

f [FJ(R:E) — F.(RE)]dR, E>0
(1
FE) ={"
f [F.(RE) — F,(R;E)]dR, E<O
0

(2.34)

is illustrated in Fig. 12. That F(E<O) is constant simply
reflects the QSS condition or constant flux through the high-
ly excited block &.

Figure 13 illustrates the variation with R, of a, the
exact partial rates (2.19) and (2.20) for the association of
dissociated pairs (E, >0) and of highly excited bound pairs
(E, <0), respectively, within the sphere of radius R .. The
former rate increases with R ;- and saturates fairly rapidly for
large R, to the exact rate for association which, in order to
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FIG. 12. Energy dependence of exact current, Eq. (2.34), normalized to
&, for the association of equal mass species under charge-transfer ion—
neutral collisions. Exact rate is the constant current across bound levels.

maintain a steady-state € block, is the rate of generation of
net inward E, pairs with infinite separation.

The rates that bound E; pairs are lost also increase with
R due to continual downwards output, but reach a maxi-
mum when the upward input from other levels becomes
competitive, and then decrease as a result to zero at the clas-
sical point R, of classical motion. There is a net loss of bound
E, pairs with small R and a net gain of pairs with larger
R<R; so that the R-integrated distribution (2.5b) remains
constant in time. The zero rate at the apocenter R, in Fig. 13
reflects the QSS condition (1.8) in Eq. (2.20) for no net loss
or gain of R-integrated bound E; pairs in block &.

The rate a( R) of volume recombination within a sphere
of radius R, the rates of Fig. 13 integrated over £50is given
in Fig. 14 as a function of R. It is worth noting that 60% of
the exact rate @ = a(R— ) is achieved within the sphere
of the natural (Onsager) radius R, = ¢%/kT as designated
by the arrows.

ill. MASS EFFECT IN STRONG-COLLISION MODEL

Figures 2 and 7 illustrate the ratio of the strong collision
result (2.10) to the exact result ag for equal mass species

TS BAES h an  m
- - 4 :
E S -,
3 e = <e> 0
o - . 3
g0 - ~wE<0 3
T T 4 ™~ 3
Y 2:_ Il ~. 3
el ¥ AN
s F E<O 3
= -
- L.
215 4
: “.. APO CENTER ]
1] PRSI S T WO SN R (N ST S T . | T :
[+) 2 4 [} 8 10
(R/ Ry

FIG. 13. Normalized rate equations (2.19) and (2.20) that pairs in contin-
uum and bound energy levels £ recombine within a sphere of radius R.

{R/Ry)

FIG. 14. Rate that fully dissociated pairs (with a Maxwellian energy distri-
bution) recombine within a sphere of radius R. The exact rate is a;.

recombining in an equal mass gas, i.c., a, the mass parameter

(2.11),is (1/3). In Fig. 15 is displayed variation of the same
ratio over the full range of a. Small a=~ 1072 implies heavy
particle recombination in a vanishingly light gas, while elec-
tron-ion recombination in a normal gas is characterized by
large a= 10°. It is noted that the radius R %, where a(R ;)
= a increases from ~0.1R, to ~0.5R, as the parametera
increases to unity, and then decreases back again as the pa-
rameter a further increases. For greatly mismatched species,
i.e., in the limits of small and large a the energy-change colli-
sion dynamics is weak, and vanishingly small energy
changes are involved particularly for deactivating transi-
tions across the dissociation limit at E, = 0. The stabiliza-
tion probability P7 in Eq. (2.6) and Fig. 4 is therefore of
prime significance. To invoke the strong-collision assump-
tion (2.9) for these bound levels close to the dissociation
limit and important at small and large a is therefore without
validity. Although some physical significance can be at-
tached to R §, where a( R ) and a, are equal, for intermedi-
ate a~ 1, as previously discussed in Sec. II, no such signifi-
cance exists in the limits of small and large a. The-essential

- reason why R %~0.1R, becomes unacceptably small at

8 ——r—

g

afRy: a)/ agfa)
L) r" L Tﬁ’ T

i i 4L A - J;L A A 1.
% 0.2 0.4 0.6 0.8 1.0

(Ry/ R)

FIG. 15. Mass effect in strong-collision model: R, variation of the strong-
collision rate (2.31) normalized to the exact rate a,, Eq. (1.6), for recom-
bination of systerns with various mass parameters g, Eq. (2.11).
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these limits is that small R % effectively (numerically) off-
sets the large addition to the inner integral of Eq. (2.10)
entailed by the strong collision assumption (P} = 1) in Eq.
(2.6). The smaller exact values of P (cf. Fig. 4) are more
appropriate to the impdFtant levels in the vicinity of the dis-
sociation limit for large and small a.

IV. RECOMMENDED LOW-DENSITY TERMOLECULAR
RATES

Due to the long-range Coulombic attraction and to the
use of shorter-range ion~neutral interactions {charge-trans-
fer (CX), polarization (POL), and hard sphere (HS)],
rates for the termolecular ion—ion recombination,

AT +B- +M~AB+M (4.1)
between general atomic species in a general atomic gas may
be characterized” by a universal function of the mass param-
eter (2.11) and of the gas temperature T [cf. Egs. {A40)-
(AS3)]. This universality does not extend to ion—atom asso-
ciation which, due to the closer interactions involves, de-
mands individual calculations for specific systems. As pre-
viously mentioned, rates (1.6) or (1.9) or (1.10) have been
obtained numerically from Eq. (A55) via the highly accu-
rate numerical solutions P F to the integral equation (1.8) for
the stabilization probabilities. Converged probabilities for

e
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small and large mass parameters g in particular were ob-

tained only when the integral equation (1.8b) was discre--

tized into 100 algebraic equations via the efficient procedure

of Ref. 3. Previous results'~> adopted 36 equations at most.
' Recommended values of the ratio!~

R(a) = (My/Mup) [aP (0 D/ar (D], (4.2)

where af is the exact numerical rate (A55a) originating
from (i — M) collisions alone, are presented at closely
spaced a in Table 1. The exact low density rate can be repre-
sented to a high degree of accuracy by®

(4.3)

Although the partial rates i are tabulated here to four
significant figures, the recombination rule (4.3) as previous-
ly tested was then shown to be accurate to three figures at
best or two figures at worst. The test however relies on the
accuracy of the solutions to the integral equations (1.8b)
with C; taken as C{M,C® and [C{M + CP'] where
C{A"® is the one-way equlibrium rate which results from
individual A~M and B-M collisions; respectively. Since the
present converged probabilities 2§ have been determined by
a numerical procedure® more accurate and efficient than
that? previously used for the test, the accuracy of rule (4.3)
is being updated.

a=a +aP.

TABLE I Nonmalized pertial rates 10 (M, /M., ){(a2/&,) for termolecular recombination A* + B~
+ M—AB + Masafunction of mass parameter a = M, My /M, (M, + My + M,) for various interactions
(CX: symmetrical resonance charge transfer; HS: hard sphere; POL: polarization attraction) in collision

between A and gas atoms of mass M, .

L cx* HS* pOL® s HS* POL*
0.0010 1.291 1.278 1.029 1.5000 9.452 6.751
0.0020 1.816 1.818 1472 2.0000 8.593 6.044
0.0030 2.208 21 1.800 2.5000 1877 5.472
0.0040 2.530 2.554 2071 3.0000 7.276 5.003
0.0050 2.807 2.34) 2.304 3.5000 6.766 4.611
0.0060 3.053 3.098 2.512 4.0000 6.328 4.280
0.0070 3.274 3.329 2.699 4.5000 5.947 3.994
0.0080 3476 3542 1.870 3.0000 5.613 3.746
0.0090 3.662 3.739 3.029 $.5000 5317 3.529
0.0100 3.835 3923 Lim 6.0000 5.083 3.336
0.0200 .18 5.313 4.288 6.5000 4.815 3164
0.0300 5.959 6.264 5.03% 7.0000 4.601 3.010
0.0400 6.581 6.986 5.603 1.5000 4.406 2.871
0.0500 7.066 7.565 6.049 8.0000 4.228 2.744
0.0600 7456 8.042 6.414 8.5000 4.065 2.629
0.0700 7.778 8.444 6.719 9.0000 3914 2.523
0.0800 8.047 8.789 6.976 9.5000 3.775 2.426
0.0900 8.276 9.086 7.197 10.0000 3.646 2336
0.1000 8.471 9.347 7.387 12.0000 3.212 2036
0.2000 9.459 1.078, + 1 8.377 14.0000 2.875 1.806
0.3000 9.709 1127, + 1 8.644 16.0000 2.604 1.624
0.3333 9.727 1134, 4+ 1 8.666 18.0000 2.382 1.476
0.4000 9.709 1.140, + 1 8.652 20.0000 2.196 1.353
0.5000 9.600 1136, + 1 8.547 $0.0000 1.029 6.064, — 1
0.6000 9.446 1124, + 1 8.389 100.0000 5.535, ~ 1 an, -1
0.7000 9.269 1107, + 1 8.206 500.0000 1.198, ~ 1 6,582, — 2
0.8000 9.045 1.087, + 1 8.013 1000.0000 6.029, ~ 2 3.253, -2
0.9000 §.860 1067, + 1 7818
1.0000 8.678° 1.046, + { 7.62%

*In CX small gimplies My KM, = M,;2= | implies My DM, = M,.

*In HS and POL smail g implies recombination in a vanishingly light gas and large g ( = 10°) implies electron~

ion recombiniation in 3 normal mass gas.
¢ For CX, the maximum value of a is 0.998.
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The partial rates (4.2) are very insensitive to a realistic
choice of either the level — S (X — 10kT), below which the
stabilization probability P is calculated as unity, or the low-
est level — Dsince the one-way coupling C,, connecting the
dissociated states i to any beund level £ decreases extremely
rapidly and is quife negligible for states with binding ener-
gies D as low as 30 <7, which is much smaller, in general,
than dissociation energies of normal molecules.

The temperature dependence of a}’ follows that of @,
the Thomson rate (A40) with Egs. (A41)-(A44). Resuits
of a recent diffusional treatment’ are in close agreement with
those of Table 1.

In conclusion, via an exhaustive investigation of the
strong-collision and bottleneck methods of the termolecular
process (4.1), interesting underlying physics and dynamics
of the basic process have been uncovered and studied. High-
ly accurate rates have been presented (Table I) for future
use.
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APPENDIX: ONE-WAY EQUILIBRIUM COLLISION
KERNELS C,(R)

The one-way equilibrium rate per unit interval
dR dE, dE, for E, ~ E, transitions in the microscopic pro-
cess,

(A—B)g,‘ +M- (A‘B)gpg +M
at specified internal separation R of the pair AB is

Cy(R) =, (R)v,(R) =&, [viP (R) + VP (R)].

(A2)
The equilibrium distribution #, (R) per unit interval d R of
{A-B) pairs with internal energy E,, internal kinetic energy
T',, and reduced mass M, is

(Al)

7, (R)dE,
NiNy
2 T, 12
‘;ﬁ;(ﬁ) exp( — E/kDd(To/kT) - (A3)

at temperature T. The frequency v, per unit interval JE, for
E, - E, transitions is assumed in Eq. (A2) to be the sum v}/’
+ v7’ of the separate contributions v/’ that arise from (A-
M), j= 1, and (B-M), j = 2, binary collisions at fixed R.
The species A, B, and M denoted by indices 1, 2, and 3,
respectively, have masses Af,, reduced masses M, and veloc-
ities v, and v/ before and after the ( 1-3) elastic collision with
differential cross section o(g,¢) which changes the (1-3)
relative velocity from g along the polar axis to g'(#,4).
Hence the (1-3) energy-change collision frequency is

o

| 80(8¥)d(cos ¥) (4,

(Ad)

V(V”(R)dsf = [f No(';)d',

where the integration is over the (v,,¢) region of velocity
space accessible to E, — E, transitions. The velocity distribu-
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tion of gas species with concentration N (cm™?) over the
kinetic energy

T) = W:tg
of AB-M relative motion is the Maxwellian

(AS5)

No(v,)dv, = NG(T)dT, [# d(cos o,)d¢,], (A6)

where the distribution
G(T,)dT, = _,/2: (TykT) 2 exp( — Ty/kTYd(Ty/kT)
mw

(AT

represents thermodynamic equilibrium at temperature T
between 3 and the ( 1-2) center of mass.'* The reduced mass
of the AB-M system is

M, = (M, + M))M;/(M, + M, + M,)
=aM = (1 + a)M,,, (A8)
where a convenient mass parameter® for (1-3) collisions is
a=MM/M (M, +M,+M,). (A9)

The (1-2) center of mass is at rest before the (1-3)
collision which changes both the kinetic energy

Ty = M (v, — v)?
=iMvi; M=M (1 +M/M,) (A10)
of (1~2) relative motion to T ;, and the internal energy
E, = Mv{ + V(R) (All)
at a fixed R by
=T, -T,= le[ (v =) — (v, ~ '2)2]-
(Al2)
The (1-3) relative momentum is changed by
P=M;(g —8) =M (v —v) =M(v;—-v;)
(Al3)
and the (1-3) relative energy T, remains M, g*. On fol-

lowing from analysis in Ref. 15 it can be shown that the
Jacobian J, in the angle-kinetic energy transformation

is given by
Sy (4, T3, T5€)
t 2
=44 7,17y
X(T+ =T —p)g—u=)) "2
(Al5)

The scattering ¢ region accessible at fixed T, T;, and € is
the range 4~ <cos ¥<u*, with limits

pr=0-TH'" 1 -TH'" 1,1, (A16)
where
ri= [(T.*i = Tu)(T,; - Tl;)]/
[4T,(T;2 + T, - T,3)) (Al7a)
and
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T} =[(T3 = Tu)(Ts - T; W
(4T(T;+ T, = T3 ). (AI7b)

The accessible T, region accessible for fixed 75 and € is
the range -

T- =max(T5,F5)<Tu<min(T 3, T35)=T*
(A18)
which ensures real 4 * , where
TE(TyT) = (TY*Fa "’ T)HY(1 +a)  (Al9a)

is a functiop of the initial kinetic energies, and where
TE(T3T) =(T2Fa 2Ty (1 + a)

(A19b)
is the same function of the final (1-2) and 3 kinetic energies
T, =Ta+e (A20)
T,)=T,—¢ (A21)
Since
A, (R) Ny(T,)dT,
TR 1Y
4 (N Ny)
= ————exp ~ (E/kd(E /kT), A22
Ty xp — ( nd( n (A22)
where
(A23)

then the contribution to the one-way equilibrium rate (A2)

from (1-3) collisions is
(l +a)2( 2 )I/Z
a My,

—~ E/kT)d(E/kT)

CPR) = (RIVPD(R) =

(NANgN) (=
X an® Jn
-
x j )
X[(u* —p)(w—pu)]1""dy, (A24)
where Tis E — V(R), as defined in Eq. (A23), and where
E, = min(E,,E,) (A25)

ensures real 75 and T'; in Eq. (A18).

Case I: When the differential cross section o is a func-
tion only of T, as for spiralling ion—neutral collisions under
pure polarization attraction when

aMel)l/I
(T ] = ’
oTis ) (87'.,

where ay, is the polarizability of M, then
aMeZ)l/Z
M,
(1+a) (N, Ny
a(kT)?

X [sin“ (—:.—-T - )m —sin~" (—:—T— )m]
T T

X d(E/kT),

(T—-T,,)""%dT,, Jﬂ a(T34)
-

(A26)

cpr =(

N @
) f exp( — E/kT)
E,

(A27)
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where T is T,, + T; as in Eq. (A23). Integration over R
yields an expression identical to that of Bates and Mendai.® -
Case II: For hard sphere collisions when

(T3 ¥) = =2 (A28)
then?
(NANBN) *
cHry=2 __——-—f —E/k
Ry = G D Sy, P ED
XUT~THYV2—(T—T+)2)d(E/kD.

(A29)

Case III. When c(T,,,¥) is a function only of momen-
tum change P as for the Born approximation or for pure
Coulombic attraction when

o(T,5¥) =4e'M3 /P = o(P) (A30)
and by finding the Jacobean J, in
d(cos 8,) dp d(cos ¢) =1, dT;, dPdT,, (A31) -
then from previous analysis,'® it can be shown that
2”2(1 +a) (NANBN)
C(l) R)=
v (R) a'’M,, (kD)?
@ 1
x f exp( — E/kDYA(E/KD) | o(P)ap,
& P
(A32)
where the limits to the momentum change P for specified
iV, v{Y, and € are
P~ (v,v5;€) = max[ M |v; — v,|,M,|v; —v,]] (Ad3a)
and
P*(v,05€) = min[ M(v] + 0,),M, (v} +0y)].

(A3lb)

Case IV. Symmetrical resonance charge-transfer (1-3)
collisions

Xt 4+ XX+ X* (A34)

between an ion and its parent gas simply interchange v, and

v,. At thermal energies the integral cross section o * is essen-

tially independent of relative speed g. It can then be shown
that!

[(1 +¢)/c)*? (NaNgN)o*

CPR) =

(zﬂMn)llz ,(knJIZ
Xexp[ _(l+¢) (€, +E/)]
(14 2¢) kT
V(R)/kT”'
G(E)dE, 5
Xexp[ R (EVAE, (A3S)
whcré
c=M,/M,

and where the fraction of Maxwell particles with energies E
in the range E ~ E<E * with limits

E*=[c(l+c)/(A+20][Ti7 £ TH?]° (A36)
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5
G(E)dE = [erfc(z/kn”’
-1 2 .~
— =_(E/kT)'"* exp( — E/kT)]
T = B~
“ (A37)

The above rates (A24), (A27), (A29), (A32), and (A3S)
satisfy the detailed balance relation C;(R) = C;(R),andR
integration of Egs. (A27), (A29), and (A35) yields pre-
vious expressions. '~

Computational equiiibrium rates: C, may be conve-
niently expressed for computational purposes in terms of
dimensionless units,

A= —EJ/kT, p= —E/KkT, v(r)= — V(R)/kT,
r=R/R,, R,=&/kT (A38)
by '
47C,(R)R*dR (dE,|dE|

=Ta F(Au;r)? drdidu (cm’s™") (A39)

in terms of specified mass factors I' and the Thomson (low
density) rates,

@, =4$m(R,/B)(3kT/M ;) ’0,N, B=3/2, (A40)
where g, is the integral cross section for (1-3) collisions are
relative energy 3kT. The appropriate mass factors I in Eq.
(A39) and cross section g, in Eq. (A40) are
3\i2 ﬂ’ (1 +a)2 M
r=(3) " (B) 5 (5)s ot

(A41)
for hard-sphere (1-3) collisions with integral cross section
ol

C

3a r”; 00=03 =l

—_— mR?
m(l+a) 9

(A42)

for Coulomb (1-3) collisions with integral cross section 0%
which corresponds to Coulomb scattering by angles > 7/2,
and to energy transfers €5 (3/2)kT for equal mass species.
For (1-3) polarization attraction/core repulsion for colli-
sions within the orbiting radius,

r=(3) (&) 5 (5
2/\nr a*? M,
go=08 =2m(ay,R,/}'"? (A43)
and o § adopted in Thomson’s rate ( A40) is the correspond-
ing integral ( elastic or momentum transfer) collisional cross
section at (3/2)kT relative energy. For (1-3) charge-trans-
fer collisions, .
172 3 3/2

*= (_:.\ (ﬁ_) (ﬂ) D oo =20% (A44)

T ¢
where o, in Eq. (A44) is the corresponding momentum-
transfer cross section, taken as twice the cross section o ¥ for
charge transfer.'

The corresponding dimensionless functions F in Eq.
(A39) are symmetric in A and u and are
FHAur) =f exp( — NdY [P,
.,

-P_];

Yo=max( -4, —pu) (A45)
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for hard-sphere (1-3) collisions with (dimensionless) mo-
mentum-change limits P, >P_, given by

P_(Ag;r) = max{(v(r) =412 = (u(r) — ]V,
a'2[(Y+A)""2 = (Y +pu) %]} (Ad6a)
and
P, (Aur) =min{[v(r) =412 + [0(r) = pu]V%

al/Z[(Y+A)l/2+ (Y+[l)”2]}
(A46b)

For Coulomb (1-3) collisions,

FC(Au;r) =JT exp( ~ NAY [P 23— P {°].(A4T)
For polarization ( 123) collisions,

Fr(Aur) = J;. exp( — dY

X {sin~(G,/A) —sin~'(G,/4)],

(A48)
where
G (Au;r) = max[|(Y + 1)'?
—a"?[u(r) =4 ]"%;
I(Y+#)I12 —a'"?[u(r) —pu]'?],
(A49)
Gy(Au;r) =min[(Y + 4)"% - a"?[u(r) = 4]V
(Y+ )2 —a"2(u(r) — u]'?],
and
A= 1+ u(r + Y]V (AS0)

For charge-transfer (1-3) collisions

F X(Au;r) = exp [(ll:;) 1 +;4)]

1/(1 + 2¢)r}

xXexp[ —

£.
x[gerfg—gexp(—gz)] , (AS1)
'S
where

&y (A E(IH'C) {[v(r) -
+ [v(r) —u)' 2} (AS2)

The universal expression (A39) is also valuable in that
the one-way equilibrium current (rate) across an arbitrary

bound level v = — E /kT is simply

a, =Tla; J dA r F(Au)du,

wherew = — D /kTisthe maximum binding energy in units
of (kT) and where

]I/2

(AS3)

F(Au) =J‘MF(/1..;4;r)r2 dr, r,=1/max(du).
0

(A54)
This equilibrium collisional rate displays a minimum at
v* = (1-3)kT, the location of a bottleneck (see Fig. 3). The
QSS rates (1.9), (1.10), and (1.6) reduce simply to
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a="Ta, r dA f F(Ap)P S(u)du, (AS5a)
- % 0

a=Td, J.a F(Au)P2(u)du, (ASSb)
& e

=ra,f MF[P’(#) —-P

where e = — S/kT.
Also various energy-change moments,

D(m)(E ) ___f

are useful® in a Fokker-Planck reduction of the collision
term (1.2). These can be =xpressed simply as
DI(E) =Ta&; NNy (kD™ '( = "2 (D),
(AS7)

S(A) | F(Ap)dp,
(AS55¢)

- E)"C, dE, (AS6)

where the dimensionless moments

W= [ w-drFamds A

are easily determined® on using one of the relevant expres-
sions, (A45), (A47), (A48), or (AS1), pertinent to the’
chosen binary A-M and B-M interactions of A and B with

the gas M.
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Variational principle for termolecuiar recombination in a gas
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A variational principle for the rates of termolecular processes is proposed and then applied to
recombination between atomic ions with excellent resuits. The variational expression when
minimized with respect to stabilization probabilities is capable of providing rates identical to
those determined from the quasi-steady-state solution of the full Master equation. Connection
is made with electrical networks and with the principle of least dissipation.

1. INTRODUCTION

An important objective in chemical physics is the for-
mulation of a variational theory of chemicali reactions which
is exact in the sense that the deduced variational expression
will yield, upon variation of relevant parameters, the distri-
butions i, and rate constants which are identical with those
obtained by direct solution of the exact Master equation for
the particular process. The variational procedure of Wigner'
and Keck? is “‘variational” in the sense that it yields a least
upper bound to the rate of a chemical reaction as determined
from a Master equation. The reaction is represented by the
motion of a point (p,q) in multidimensional phase space
across a trial surface S which separates a block ¢ of initial
reactant states i from a block .# of final product states /. The
one-way rate R that representative phase points flow (down-
ward) across S—or flux of trajectories—is an upper limit to
the actual rate since (a) upward reexcitation to states / above
S is ignored and since (b) a representative point which
passes through S more than once is repeatedly included at
each pass. The additional use of an equilbrium density #, for
the reacting states then provides a rigorous upper bound R,
to the reaction rate. A minimum—the least upper bound—
to R, is then obtained by variation of the trial surface S.

In termolecular electron-ion or ion-ion collisional re-
combination

A*+B- +M-AB+M (L.1)

at low gas deasities, for example, the “‘surface”, can be taken
as some bound energy level — E of the pair AB so that an
upper bound to the two-body rate constant a(cm®s™') for
recombination (1.1) is

- - - K
R,(-E)=f dE,J. C,dE; >a N, Ny, (1.2)
-~K -D

where N, and N, are the equilibrium concentrations of A *
and B~ and where C,, is the one-way equilibrium collisional
rate per unit interval dE, dE, for transitions between energy
levels E, and E, of AB pairs. The level — E separates the
“reactant” block € of states / with energies E, in the range
— ECE; < o from the “product” block ¥ of states f with
energies E, in the range — E>E > — D, where — Dis the
lowest energy level of the AB pair relative to a dissociation
limit at zero emergy. A minimum to R, occurs at
— E = — E* which therefore acts as a bottleneck or transi-
tion state. States above — E * are more likely to be excited by
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collision and hence are unstable with respect to association,
while those below — E * tead to be deexcited and are there-
fore considered as stable. For this one-dimensional surface,
the Wigner~Keck treatment is then identical with the bott-
leneck method proposed by Byron et al.? for three-body elec-
tron~ion recombination.* For termolecular recombination
of arbitrary mass ions in a gas, this variational treatment
yields rates® which are higher by factors of 2 to 8 than the
exact rates® obtained from a Master equation.

What is desirable is a variational method which will
yield a rate identical to that determined from solution of the
full Master equation. This search requires the addition, as
illustrated by Fig. 1, of a block & of highly excited states i for
which the reaction can go either way. The block is character-
ized by the overall probability P for stabilization via down-
ward (£ —.7) transitions or by the overall probability
P? = (1 — P}) for disruption via upward (& —~ <) transi-
tions. This block & lies intermediate between the reactant
and product blocks ¥ and . which are separately charac-
terized by P§ = 0 and P§ = 1, respectively.

In this paper such a method is proposed and is then
applied as a case study to the well-developed example® of
termolecular ion—ion recombination (1.1) in a low density
gas M. Connection is then made with the principle of least

LI [N B I (R B S S S SN S R

FULLY DISSOCIATED PAIRS —e= P3-0

T P2.0.P%e ]
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FIG. 1. Schematic diagram of energy blocks ', #, and & pertinent to
recombination at low gas densities.

© 1988 American Institute of Physics




M. R. Flannery: Variational principle

dissipation, well known in heat-conduction problems and in
electrical networks. By analogy with this principle for a
network of resistors, Bates’ very perceptively postulated
that a minimum would exist, with respect to variation in the
normalized time-independent distributions
¥, (E,) = n,/#,gin the fime-independent measure:

xaf 4s,f (v, — 12 C, dE;
-D -D

of the total rate of restoration to thermal equilibrium. Men-
da#® then noted that minimum .« is obtained for a quasi-
steady-state distribution of excited levels determined by

r,f C({ dE,=J. }’f C{-f dEf.
-D -D

The present formulation permits the identification of this.4
so minimized with twice the actual (quasi-steady-state) rate

(1.3)
(1.4)

constant
- -~ &
aN, 17.=J dE,J' (¥: = ¥,)Cy dE; (1.5)
-£ -0

which is the net downward constant energy-space current
across any level — E, in the block # of excited levels in
quasi-steady-state. A supplementary calculation of Eq.
(1.5) with the variational result of Eq. (1.3) is then not
required. Note that the upper bound {Eq. (1.2)] is recov-
ered upon eliminating block & by assigning
¥( —E<EKw) =1 and y,( - E>E;> — D) =0 in ei-
ther Eq. (1.3) or Eq. (1.5).

1l. VARIATIONAL PRINCIPLE
The net rate for termolecular association

A+B+M=AB+M @n
between A and B in a gas M is’
R4 .—.f' Pf(ﬂ)dz, (22)
-D dt
=aNA(‘)N'(‘) -k"l(‘) )
(2.3)

where P} is the stochastic probability that a pair AB with
internal relative energy E, is connected via a series of energy
(state)-changing collisions to a sink .7 of fully associated
AB pairs. The concentration », (t) of AB pairs with internal
energy E, of relative motion in unit interval dE, about £,

elops in time ¢ according to the standard Master equa-

tion®

dn - aJ
Taia =), [mtrv, =m0y, | dE; = --5;_"-,
(24)

where — Dis the energy of the lowest vibrational level of AB
relative to the dissociation limit taken as zero energy.

The frequency per unit interval dE, for E, — E, transi-
tions in AB by collision with gas species M is v, which is
linear in gas density . At low gas densities, R s linear in ¥V
so that P¥ is then only required to zero order in N. Over the
range 0< E, < oo which defines the € block of fully dissociat-

P T s L -
21§ *

ed reactant states, 71, at low N can then be taken in the colli-
sional part of Eq. (2.4) as its thermodynamic equilibrium .
value i,, so that P{=0 for block €. The effective two-body
rate constant for the association of A and B with (cm~?)
concentrations N, (¢) and Ny (#) at time tis a (cm®s—!),
The constant k(s ') is the frequency for dissociation of the
tightly bound pairs in the product block % of levels with
energies E; in the range — S>E,> — D, within which the
stabilization probability P{ is unity. In the intermediate
block & of “reacting” states with 05> E, > — § in Fig. I, the
probabilities P must be determined. The net rate for termo-
lecular dissociation in the closed system is

R2(2) =J-. PP (%) dE, =-R*(1),
-D

where P2 = 1 — P is the probability that state i is collision-
ally connected to fully dissociated channels (at infinite A-B
separstion).

The proposed variational principle now asserts that the
probabilities P2 and densities x, have energy distributions
which ensure that R “°(¢) of Egs. (2.2) and (2.5) are ex-
trema at time ¢.

(2.5)

A. The quasi-steady-state deduction
Rewrite Bq. (2.2) as

- &,
A = — Ps —_t
rn=-[" ,(aE‘)az,

in terms of the net downward collisional current

- K
- J(Es) = J; dE, I R (7 (v, — nt)vs] dE,
2.7)

past level E. Since J, vanishes as E, tends to both — D and
o, the rate is then

- dPs
RA(s =f J.(E, ( ')d .
" b (E,t) dE, E,

Since P is constant (O and 1 in blocks ¢ and %, respective-
ly), Eq. (2.8) further reduces to

(2.6)

(2.8)

dps
R* =f J, (Et ( ‘) . 2.9
(2) s  (E,t) dE, dE, (2.9)
A necessary condition for the integral
%y
1= [ Flygalds, y=dyds  (210)

to exhibit an extremum is given in the calculus of variations
by the Euler-Lagrange equation'?

£(3)-5-e

the solution of which determines y(x)=={y,(x)] over the
fixed range x,<x<x,. Writt x=E,y=P% and
F(y(x);x)=J(E,) (dP3/dE,). The integral (2.9) is then
an extremum provided

i=12,...,N, (2.11)

aJ, dn,
0= ——* D -5 2.12
3, o >E > (2.12)
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for each level i within block & . This is the quasi-steady-state
(QSS) condition for pairs in block & with », (t) distributed
so that J, the current (2.7), is constant over all energies
( — E) of block ¥. The extremum rate, obtained from Eq.
(2.12) inEq. (2. 9),xsthesthenet downward current across
bound level — E of block #:

Ri(=—-J(—En -_—.f dE,
~E

-& "
XJ- [a()v, —n()vs ] dE,, (2.13)
-0

which depends on the probabilities P { only implicitly via n,.
As £ tends from above to the dissociation limit at E =0,
— J(E,t) increases monotonically to this rate.’
B. Analysis

From Eq. (2.4) the distribution

y,(8) = n,(E /R, (E,) (2.14)
normalized to the distribution #; for full thermodynamic
equilibrium satisfies

dn, _ dy bl :

e I L I LT

(2.15)

where the one-way equilibrium rate

C‘,=’-ll V',=’-lfVﬁ =Cﬁ (2.]6)
satisfies detailed balance and is linear in gas density N. On
introducing the implicit dependence of n, on the probabili-

ties P° via the separation’

v () =Py . () + Piv, (1), 217
where

YD) =, (/A =N, (ONs ()/N Ny (2.183)
and

¥, (8) = n, (1) /A, (2.18b)

are the respective concentrations »_(¢) and »,(¢) of fully
dissociated pairs with energies £, in the range 0<E, < » of
block € and of fully associated pairs of block .# normalized
to their respective equilibrium concentrations 4, and 7,,
then Eq. (2.15) separates as’®

d
2 e 10 - 1,0]

dr
xr (P7-P}C, dE, = ./ (2.19)
-p i V2 Al 'l £ . .

1
Hence the macroscopic rate (2.3) is now
R4 =aN, Ny [7.() —y,()] = ~R°(D),
(2.20)
where the association rate in units of the time-dependent
difference (7. — ¥,) is the rate constant

aN, Ny = k&, , (2.218)
J' P3dE, J' (P~ P} C,dE,,  (221b)
-.2- ) dE, f (Pf~PH'C,dE,  (22Ic)

which is now time independent and is always positive. The
upward current J past energy £ in Eq. (2.19) separates simi-
larly as®

JEL) = [y.() =7, () I(E), 2.22)
where
- E
HE) = f dE, f (P{—PC,dE,. (223
B -D

Since Eq. (2.20) is an extremum provided the QSS con-
dition (2.12) holds, i.e., Eq. (2.19) vanishes in block #
where Eq. (2.23) is constant, then the probabilities P satis-
fy the standard integral equation®

pfj_pc,dz,=f_nc,p;dz,.

When inserted in Eq. (2.21) the solutions P} yield after
some reduction the extremum rate constant,

R‘ =a. NA N.

(2.24)

.- —-E
= f dE, f (P§-P§)C,dE,,  (225)
- K -b
= L dE, f C,PSdE,, (2:256)
~-D
= J' dE, r C,P2dE,, (2:25¢)
-$ -D

where — E is any level in block &, including the ¥-& and
¥~ boundaries at 0 and — S, respectively. This extre-
mum simply confirms the identification in Eq. (2.13) of rate
with current. The nature (maximum or minimum) of the
extremum becomes apparent on performing independent
variations 5P 7 to P for each level in block & subject to the
constraints

Pi=0; OKE<w,
=1; ~DEC-S,

associated with blocks & and .7, respectively. The resulting
change in Eq. (2.20) is

SR =2[r.() ~ 7,()]
X [EsdE, 5pf{ f_ D(P,’— PHC, d.z‘]

(2.26)

+%—f_pd£, I_D (8PF — 5P5)? c,,dz,]
2.27)

to second order in 6P, For an extremum the change SR “ to
first order in 5P vanishes so that Eq. (2.24) is recovered
from Eq. (2.27). The change to second order in 5P is deter-
mined by the sign of (y. — 7,). When 7. (¢) > 7,(¢) so that
the overall direction, according to Eq. (2.20), is association,
then the extremum to R * is a minimum; and the dissociation
rate R? in Eq. (2.20) is a negative maximum. When
¥:(8) >¥.(2) so that the overall direction is dissociation,
then R 4 is a negative maximum; and R ” is a minimum. The
proposed variational principle governing Eqs. (2.2) and
(2.5) thus asserts that the rate R * or R °, whichever corre-
sponds to the overall direction, always adjusts itself to a min-
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imum, i.e., the probabilities P are so distributed that they
tend to counteract the change so as to impede the progress
towards full equilibrium (when ¥, ~¥,—1). Therate R, in
Eq. (2.25) nannmmumtol-lq (2.21).

Rather the numerical solution of the QSS
integral equation (2.23) in Eq. (2.25a) for the rate constant,
an alternative procedure is therefore a direct search of a min.
imum in the rate (2.21) with respect to variation of P}, a
procedure similar to that noted by Menda$ with respect to
variation of Eq. (1.3) with respect to y,. The presentvm-
ational principle however provides a variational expression
(2.21) for the actual QSS rate (2.25) obtained otherwise
from the Master equation.

Although the present analysis has been developed with
termolecular ion—ion recombination (1.1) in mind, it may
be casily generalized to include ion-atom association

A*+B+M-AB* +M (2.28)

between atomic species in a low density gas M. Here quasi-
bound levels (£, L?) of AB* can be formed with E, >0
within the centrifugal barrier associated with internal rela-
tive angular momentum (squared) L 3. By adopting the an-
satz [Eq. (5.2) of Ref. 5) for the distribution n, (E,, L?) of
AB* pairs in terms of the stabilization probability
P{(E,, L?) then expression (2.21), generalized to include
relevant integrations over L } and L }, is varied with respect
to P{(E,, L}) soas to provide a minimum which is then the
required QSS rate.

C. Application to termolecular recombination

Since dP;/dE, tends to zeroas £,—~Qand as £, — —~ §'
(taken now to be — ), the simplest one-parameter (4 *)
trial function is provided by

dPS(4iA*)

dA
whered = — E,/kT isthe binding energy in units of k7, the
mean energy of the gas M, and where the variational param-
eter A * is the location of the maximum at A =4 * of Eq,
(2.29). Since P( 0 )-P(0) is unity, then integration yields
the normalization parameter 4 to be (1/4 *)? and

PYAA®) = 1-(1 +x)exp(—x);x =4 /A*. (2.30)

Consider, as a case study, the well-developed example of
termolecular ion—ion recombination®

X*+X +X-X,+X (2.31)
between equal mass species. Necessary integrations of Eq.
(2.21) and solution® of the integral equation (2.24) are per-
formed by choosing 72 pivots each in blocks ¥ and & ac-
cording to the procedure outlined in Ref. 11. When Eq.
(2.30) is inserted into Eq. (2.21) and when A * is varied, the
iong-dashed curve in Fig. 2 is obtained for the ratio

r=R(A=A°%)/R,, (2.32)

where R is the exact QSS rate (2.25) determined from the
direct solution® of Eq. (2.24). Not only does the single pa-
rameter A * = 1.1624 provide & minimum to R but it also
yields the exact result to 1% accuracy with 7 = 1.011. Intro-

- (A/74%)
’

=Ale (2.29)
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FIG. 2. Ratio of the variational rate (2.21) to the exact QSS rate (2.25) asa
function of variational parameter 4 ®. (1): One parameter function (2.30).
(2) and (3): Two- and three-paramcter functions (2.35) witha = 1,6 =0
and g = 1, b = 0.7, respectively.

duction of a more sophisticated three parameter (4 *,a,b)
trial function
dPs(l;ll t,a,b)/dd. =AA(1 4+ ad + b z)e—tl//\. ,
(2.33)

where, in terms of the location at 4 ® of the maximum to Eq.
(2.33), A, is the function

A(A,a,b) =A(1 +ad +bA%) /(1 + 2a4 4+ 3bA %)
(2.34)

evaluated at A =4 *.
Integration of Eq. (2.33) subject to the constraints Eq.
(2.26) determines the normalization factor 4 and yields

PS(AA%ab) =1 — [l +x+ x°g(x)?] exp( — x);
x=A/A,,

where

g(x;A,.a,b)

(2.35)

=A,(a+3bA, + DA x)/
(14+2aA, +6bAY) .
The derivative is
d_P S(4;A, .a,b)
dA

(2.36)

=[(x+aA 2+ bA LX)/

(1+2aA, +6bAL)] exp( —x) .
(2.37)

Figure 2 illustrates that minima r=1.0008 and
r = 1.0029 are obtained for two-parameter (4 * = 1.3962,
a = 1.0,b = 0) and three-parameter (4 * = 1.5348,a = 1.0,
b =0.7) trial functions, respectively, and that these minima
agree with the calculation of the exact QSS rate (2.25).
Comparison of the corresponding probabilities for all three
variational cases with the exact QSS solution® of Eq. (2.24)
is given in Fig. 3(a). The two-parameter function is graphi-
cally indistinguishable from the numerical QSS solution in
Fig. 3(a). The agreement is in general very good for such
simple variational functions, and could be easily improved at
larger 4 by insisting that P -1 as E,—~ — S~ — (10-20)
kT rather than as E, —~ — «» in Eq. (2.35). Although the
two-parameter function provides a slightly better represen-
tation we note from Fig. 2 that the rate (2.21) is not overly
sensitive to the . nall deviations in the probabilities.
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probebility (2.24):(E). (b) Corresponding derivatives.

’

A more sensitive test’ is provided in Fig. 3(b) which
displays the corresponding comparison of the derivatives.
All of these variational curves and the direct QSS solution of
Eq. (2.24) display maxima almost equal and located in the
same neighborhood. This location has physical significance
and is perhaps key to the overall success obtained. This is
most easily illustrated by expanding

ds
Pi=P+ (E,—E,) [ ul ]

et PO
dE?

in powers of the energy difference (E, —
(2.19) yields

+ J(E,—E,) [ (2.38)

E,) so that Eq.
[dl’;’ ]
dE,

dP?
D(Z)
+2 [dE’

P AUESAG) -

] (2.39)
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to second order in the energy-change moments®

b (E,)=—‘-J (E,—E)"C,dE,. (2.40)
ml J_p
For QSS of block &,
d?P? dP-,’)
N—L)= -D"/DP= — y,(E,) (241
(dEf) (dE, i i XilE, )

so that (dP/dE,) exhibits a maximum where D", the
average energy increase per second, passes through zero,
which in general occurs® at E® = — (1-2) kT. The above
trial expressions (2.29) and (2.33) therefore implicitly ac-
knowledge the physical tendency for collisions to excite
those pairs with £> E * and to degrade those with E< E?.
Once A ? has been variationally determined by the present
procedure, it will only coincide with the actual location of
the zero in D {" to the extent that approximation (2.39) is
valid. If so the expressions then imply that the ratio (k7)
D {V/D (* may be represented quite accurately either by the
simple form (1/4 — 1/4 *) or by the more complicated form
(1/A — 1/A,, respectively. Both forms yield zero at
A = A *. Interestingly enough, the zero of D ("’ for symmetri-
cal resonance charge transfer collisions occurat 4 ¢ = 1.329
in close agreement with the two-parameter variational and
exact calculations [cf. Fig. 3(b)].
The solution of Eq. (2.41) subject to Eq. (2.26) is

ps(_E)=[£,‘Ef°"{£.,x’d5’]]
A s [ ]

(2.42)
in block &. When the approximation®
Q)
pw =22 (2.43)
dE,

between moments D ("’ and D ¥’ can be invoked, then

exp[f- X dE,] =D (0)/D?( - E,) (244)
-
so that Eq. (2.42) reduces to
P5(—-E)= [f dE,/D( — E,)]
-5
X Uo dE,/D( - E,)] T (248)
-5

This expression (2.45) has been used in Eq. (2.21c) to pro-
vide accurate rates a,, in a previous diffusional treatment.?
The more basic expression (2.42) is currently being tested. '

There are now two accurate treatments which provide
accurate analytical representations of the collisional stabili-
zation and disruption probabilities—the previous diffu-
sional method® and the present (two-parameter) variational
method. These results D from Eq. (2.45) and V¥ from Eq.
(2.35) are compared in Fig. 4 with the exact numerical solu-
tion E of Eq. (2.24). Due to a more accurate evaluation of
D!V, the present diffusional results differ somewhat from
those previously reported.’ The resulting rates
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e UL Lon=-"- 3% rm (1) -
% //// ] i it ;=5 v .
os e 7] where the current in the i—/'segment is
(©)—> (€ 4
; b I =[r® -] C. (3.2)
o / va) 1 This reduces under Eq. (2.16) to
g o / b 1,0 = 7.0 =D (PE=PH C, (3.3)
// ] =[7.(0~7,(D) iy
i 02 / ] The formal structure of Eqs. (3.1) and (3.2) is identi-
Z ] cal’ to an electrical network where the current 7, along the
U A N I line element e, from junction / to junction fin the network is
° ' 2 3 . e equivalent to the time-dependent voltage drop
(-E/XT)
V() = [7:() = 7,(0)] (3.4)
et = [r.() -, (O|(P?-PD) (3.5)

(| P/8)

3
-
b
-
b

/ALnJAlJLAIALA_lJ_

L 3
*

A(=-e¥M

FI1G. 4. (2) Probabilities and (b) corresponding derivatives in exact QSS
(E), two-psrameter (1 * = 1.3962, @ = 1) variational (¥2), and diffu.
sional (D) treatments, as a function of normalized bound energy ( - E/
kD).

(ap/ap = 1.08,a,/ay = 1) are not that sensitive, as be-
fore, to the larger discrepancies in P? resulting from the dif-
fusional and variational treatments.

ll. ANALOGY WITH (R,C) ELECTRICAL CIRCUIT AND
WITH PRINCIPLE OF LEAST DISSIPATION

Bates’ has already provided the interesting analogy with
2 network of resistors for the case when 7, (¢) = 1> 7,(¢#) so
that time dependencies can be omitted,’ and has introduced
the varistional function .#, Eq. (1.3), as a measure of the
restoration rate to thermodynamic equilibrium. Here capa-
citors are introduced (Sec. III A) so as to explicitly ac-
knowledge time-dependent currents and voltages. The pres-
ent approach allows us to identify (Sec. IIIB) the
time-independent function .4 with 2aN, N,.

The Master equation (2.15) involves the internal ener-
8y E, of relative (A-B) motion as a continuous varisble
since the spacing between bound levels are much smaller
than the thermal energy (kT) of the thermal gas bath M.
The discrete representation of Eq. (2.15) gives the net elec-
trical current flowing outward from node / of a multimode
system as

times the conductivity C,, = R ;' of the line element of re-
sistance R,,.

Since, Eq. (3.2) is Ohm's law (V. (¢) =, () R,), a
time-dependent potential

V.(8) =7(2) (3.6)°

can beassociated with any level i. All states within the source
block € are at equipotential () and all levels within sink
block .7 are at equipotential ¥, (7). The potential v; of each
& level i is below ¥, by an amount

Vi=7.(0)—y,(0) =P} [7.() - 7,(0)] 3.7
or is above ¥, by an amount

Ve=7:() ~7.(0) =P [r.() =7, (]. (38

Hence in units of (¥, — 7,), P} is the potential drop
from € to,P ? is the potential height of / above ¥, and /, is
the current Eq. (3.3) along segment e,.. Since P? within &

increases with E, continuously and monotonically from zero

within .# to unity within € then

5 (PP
ZVV=[1’e(f)—1’,(t)]i [“a? dE, =0, (3.9)
L ] ]

where the sum is over each segment e, within any closed
loop (E,—E,—E,). Equation (3.9) as already noted,” is
Kirchoff’s voltage law (KVL) which is based on the unique-
ness of the potential y,(¢) at a given time and which ex-
presses energy conservation for any closed loop within the
entire (¢ , & , %) circuit at time 2.

A. QSS simplification: (R,C) circuit

The QSS condition (2.12) for each level i of block &
(0>E,;» — 3) is equivalent to

=Y L= Y [rn®-%nlcC,
[f=~=D [~ -~D

(3.10a)
=[y.(0 —-7,(0] JLD (P$—P%) C,dE,

(3.10b)
=0, i=L2N (3.10c)

which’ is Kirchoff’s current law (KCL). The balance of cur-
rents I, which exits and enters any junction i within block
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& (1<i<N) toall junctions (f= N + 1, N + 2,..c0, inblock
¢,f=12,..Ninblock & and f=0, - 1,.., — D in block
) of the network is zero. This expresses charge conserva-
tion at junction i where there is no net buildup of density
(charge) n,. The agsatz (2717) which enables the QSS con-
dition (2.12) to be satisfied by a specified distribution P} at
all times provides the separation in Egs. (3.3), (3.5), and
(3.10b).
Under KCL or QSS, the voltages P ¥ satisfy

pff Dcvd£,=£pci,p;ds,.

The time-dependent € and .~ blocks of states are anal-
ogous to capacitors connected in parallel with their positive
plates charged to

(3.11)

Q1) =n,(1) = J; n,(0)dE, (3.12)
and
-8
Q) = (1) = f n,(1)dE, , (3.13)
-D o
at time ¢ and held at voltages
Vi) =y.(0) (3.14)
and
Vi(e) = 7,(0) (3.15)

above their negative plates. Since Q = C/V, their capaci-
tances

C,=h, = f #, dE, (3.16)
0

and

-5
C, =7, =I , dE, (317
-D
are constant. The external capacitor C, =% is connected to
internal KCL node f (or energy level) by equivalent resis-
1 A | L"

— —=] C,dE,=C, 3.18

RC[ 1-;-0-! R”- v ‘ “ ( )
and directly to the external capacitor C,=.% by a resistance
Rcs given by

LU R N

Ra Il +l/--pR”
- -3
sJ; ds,f C,dE; = Cs .
-0

Each internal KCL node i of block # is coupled tointer-
nal node fby R, and externally coupled to C, via R given
by

(3.19)

oy L
R,s f=—-D R‘,
The above resistances R, R.5, and Ry are equivalent
to a paralle] network of resistances R, connecting, respec-
tively, all states C(i = N + 1,..., ) of block € to the speci-
fied #-block state £, each #-block state i to all states
S(f =0, — ).....-D) of block .7 and all states C 10 all states
S, respectively. The electrical network - .ich corresponds to

-3
-D

the Master equation (3.10) for association is iltustrated by
Fig. 5. A time-varying current /() from capacitor C, with
initial charge @,(0) = n_(0) is subdivided along mainline
channels R, to enter a KCL network with N nodes, com-
posed entirely of resistors R,, and internal currents 7, (¢),
and is then reconstituted at C, via mainline exit channels R .

B. Principie of least dissipation

The network of resistances Rqs, Ry, Ry, and R, may
now be replaced by an equivalent resistance R with through-
put current I(¢t) determined from the power loss

IR = [y.(0) — v (O (D) (3.21)

= 3 SI3,R (3.22)
u-Z—DE\ L 4

to be
1(:)2% [7.() = 7,()]

xf dE, f (P{—~P)H*C,dE,. (3.23)
-D -D

The summations include external junctions
Cn=N+1N+2,..,0)andS(n= —D, —~D+1,..,0)
at the source and sink capacitors and the internal junctions
(n = 1,2,....N). By comparison with Eq. (2.20), the associ-
ation rate R “(¢) may now be identified with the electrical
current I(¢) of Eq. (3.23), and the rate constant identified
with
aN, N, =3 dE,f (P§—PH*C,dE,, (3.24)

-b -D

the effective conductivity R ~! of the network, or with the
time-dependent electrical current /(¢), Eq. (3.23), per unit

"

< l Vi (8 = retd
19 ¥ (g =nc(y

c

Res

'-4
R LW

L) LY
1 Ry
L

iy
N i Val9) = 7410 i
Q{9 =yl |

He

FIG. 3. (R,C) electrical diagram analogous to termolecular recombination.
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voltage drop [7.(1) —7,(1)]. When the KCL condition
(3.11) is used directly in Eq. (3.24) then the previous resuits
(2.25) are obtained.

The power loss

TYOR = [7.() — 7, ()] R4 (>0 (3.25)
is"always positive. The present variational principle (VP)
asserts that PJ, the voltage drop in units of (¥, — 7,), areso
distributed that the rate R “(7)—the electrical current
I(t)—is a minimum. When 7, (t) > ¥, (t), i.e., association
occurs at positive rate R “(¢), then VP implies that the pow-
er (3.25) dissipated by (A~B) and absorbed by the gas M is
least. When R 4 is negative, the net direction is dissociation
which occurs at rate R 2(f) = — R *(2) when 7, <¥,, then
VP implies that the power provided to AB by the gas M is
least.
This principle of least dissipation is basic in many fields,
¢.g., thermodynamics, heat conduction, fluid mechanics.
The principle for heat conduction was derived explicitly by
Onsager."* For a current / eatering a KVL and a KCL elec-
trical network via R, and exiting via R 5, the currents with-
in the KCL network are so distributed that the summed rate
of dissipation of energy in the R, , R,;, and R, ¢ resistorsisa
minimum—Joule’s law. With this law, Bates’ postulated
that a minimum would exist in the measure .4, Eq. (1.3) of
the restoration rate of thermodynamic equilibrium by re-
combination in highly nonequilibrium systems [when
7.>7, and ¥, = PP in Eq. (2.17) so that explicit time de-
pendences can be ignored®]. Mendas® then noted that the
distributions n, associated with this minimum satisfy the
QSS condition (1.4). From Eq. (3.23) it follows that this
unnormalized time-independent measure .4 may now be
uniquely identified as the rate 2aV, N, so that the mini-
mum of .« yields the minimum rate (2.25a) directly, with-
out the further need for substituting the final variational
function P? = 1 — P7 in expression (2.23) for the current
(2.25a) or in Eq. (1.5).

The present assertion that the rates (2.2) and (2.5) are
extremum implies a principle of least dissipation for chemi-
cal reactions. The rates R “2(¢— « ) tend naturally to zero
when thermodynamic equilibrium is obtained for the com-
plete system. This is analogous to the electrical current
decaying to zero when the voltages across the capacitors C,
and C, connected in series across R become equal.

C. Use of diagram

Various QSS results may be deduced rather readily from
consideration of the electrical diagram (Fig. 5).

Result I: The mainline entrance current along R, and
entering KCL node n is

ir =P3C., (3.26)

in units of (¥, — y,). The total mainline current which en-
ters all N nodes of KCL block & and node n = 0 of block .
from block ¥ is

— — N
aN Ny=S ir= f Ce P dE, (3.27)
n=0 -D
which is the association rate R“4(r) in units of

[7.()-¥,(2)] in agreement with Eq. (2.25b).
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Result II: The current which exits KCL node n along ali
the internal resistors R, and external resistors R 4 of Fig. 5.
is

N
ir= /2 (PS$-PHC,,. (3.28)
-0

The total current exiting from ali N-KCL nodes is then
N N
i+ 1-pP3 C,,ajo Cy, P2dE, (3.29
2= 3, 0-PDCun]_ CopPdE 0

LR
which when combined with the Z'-% direct current,
ip = Ccg yields

k7, =f Cy P2dE, (3.30)
-5

in agreement with Eq. (2.25c). The KCL law,
I, =i} —i; =0,Eq. (3.10) applied tonodes n = 1,2,.. . N
not only confirms the QSS condition (2.25) but also de-
mands equality of Egs. (3.27) and (3.30), which provides
macroscopic detailed balance.

Result IIT: From Fig. 5, the total mainline entrance cur-
rent to nodes below a designated KCL node NV *:

Ne -E
i (N =Y i af Co PFdE,,

n=0 -D
where the junction N *® is associated with energy level — E.
Theinternal and mainline exit currents from nodesabove N *
sum to

N N N
i (>N%= ir= (P3-~PHC
. ng;‘ n;;'-o 4 v
(3.32)
arEdE,rD(P'}—Pf) C,dE, (3.33)
which reduces to
-£&
iJg =f dE‘,J~ (Pf—Pf) C,dE,.
-E -b

Since i} =i; for each KCL node the total current
(if +iJ) inunitsof [y () —7,(D)] is

(3.31)

(3.34)

- -E
aN, Ny =f,‘E'f . (P§—P})C,dE, (3.35)

in agreement with Egs. (2.23) and (2.25).

Result IV: When C, with charge Q,(r) gains a charge
dQ, and C, with charge Q,(t) gains a charge dQ, on their
positive plates within time df, the sum of the total electro-
static energy (V,dQ, + V,dQ,) gained by the capacitors and
the thermal energy (3.21) radiated must be zero. Since the
charge

q=n()=n0), i=12..N (3.36)
at each junction i of the N junction KCL network remains
constant then the total charge distributed among the capaci-
tors of initial charges Q,, and Q, is

Qi) + () = Q1o+ O
and the discharging/charging current is

[= -9 4o
dt dt .

Hence the power equation is

(3.37)

(3.38)
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vV, - vy [5‘%'-] +IR=0 (3.39)
which also follows from application of KVL, Eq. (3.9), to
the (C,,R,C,) circuit at time ¢. Hence

R — _ dRUD _d0:(0)
R = dt dt

= L1aw/c, - a/cl (3.40)
which is the analog of Eq (220) with
R~'=aN, Ny, 7. = Q\(1)/C,, and 7, = @:(£)/C;. The
equation is linear (rather than quadratic) in @, since Eq.
(2.7) renders the basic equation (2.2) linear in the (pair)
distribution (3.12) of dissociated species AB. The solution
of Eq. (3.40) subject to C, being initially uncharged
(Qio=0)is
Q.(1) = Q(C/C,)[1 —exp—t/RC]

t— o0 C'

—.—t 0, 3.41
€+ Co @z (3.41)

and
Q,(0) = Qy[1 — (C/Cy)(1 —exp—t/RC)]

{—=a CZ

-—: 0., (3.42)
(C,+C,) Oz

where Cis C,C,/(C, + C;). As t— w0, the voltages across
each pair of plates, y. = @,/C, and y, = @,/C, are equal
(and opposite), no current flows and charging is complete
(corresponding to thermodynamic equilibrium). When C,
has infinite capacity for absorbing charge, i.e., when C,» C,
then C—C, so that

Q.(2) = Q{1 — exp — t /RC,)
and

0,(8) = Qyexp — t/RC,, 3.44)

so that the dissociation frequency k can be related to the time
constant for discharging of C, and charging of C, by

k =1/RC, (3.45)

as expected (since C, =7, and 1/R =aN, Ny =kh,).
This rate constant governs only the rate of approach to, but
not the magnitude of, the asymptotic limits.

In summary, appeal to the network (Fig. 5) provides
results (3.27), (3.30), and (3.35) which are exact under
KCL condition (3.11). For voltages which do not satisfy
this KCL condition, then Eq. (3.24) is used for the electrical
current in units of (y. — 7,).

(3.43)
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V. SUMMARY

A variational principle based on the search for a mini-
mum to the net rate R “(¢) for association with respect to
variation of the stabilization probabilities P} has been pro-
posed. It is capable (Sec. II B) of providing probabilities P§
and rate coefficients a identical with those determined from
direct QSS solutions of the Master equation. In this sense the
developed expression (2.21) provides a variational expres-
sion for the QSS approximation. Good trial representations
(Sec. I B) for P{ exhibit a maximum in |dP$/dE, | near the
location E ¢ of a physical bottleneck.

By introduction of the additional block & of highly ex-
cited levels i sandwiched between the reactant and product
zones Z and .7, respectively, and characterized by forward
and reverse (variational) probabilities P and P?, respec-
tively, the present variational method is more detailed and
complete than the least-upper-bound variational method of
Wigner' and Keck? which ignores this block.

The minimum with respect to variation in s, of function
(1.3) postulated by Bates’ via an, with an electrical
network is identified here with 2a¥, N, so that the supple-
mentary explicit calculation of the rate (1.5) is not required.
Electrical diagrams (as Fig. 5) may be utilized very effec-
tively not only to analyze (Sec. III C) the detailed dynamics
of termolecular processes but also to facilitate the ready con-
struction of various simplified approximate schemes.'
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Diftusional theory of termolecular recombination and assoclatlon of atomlc

species in a gas
M. R. Flannery

School of Plumu. Gegrgia Institute of Technology, Atlanta, Georgia 30332

(Rwexved 10 June 1987; accepted 10 September 1987)

A diffusional treatment of termolecular association of atomic species A and B in a low density
gas is presented and applied to positive ion-negative ion recombination over the full range of
masses of reactants for various classes of ion-neutral interactions. In contrast to rates given by
the diffusional current, excellent resuits are obtained for general mass species pmmded a more

basic expression for the association rate is introduced.

I. INTRODUCTION

The picture of electron—ion recombination, of termole-
cular positive ion-negative ion recombination, and of termo-
lecular ion—atom association:

a

A+B+M=AB+ M, (L1)

k

involving subsystems (A-B) associating in a thermal bath of

dilute gas M as proceeding via diffusion in energy space has-

stimulated'~” a great deal of interest, in principle, valuable to
elucidation of the dynamics of association processes and to
many examples of decay of laser-produced plasmas, of reac-
tion processes in flames, of shock wave propagation, etc. Ina
classic paper on electron-ion recombination, Pitaevskii® de-
rived a rather elegant analytical expression for the two-body
rate coefficient @ (cm® s~ ') in Eq. (1.1). Because of its in-
herent simplicity over more sophisticated and therefore time
consuming procedures based on a collisional input—output
Master equation,’? the result has been applied to heavy-
particle recombination™ which proceeds three orders of
magnitude faster than collisional electron-ion recombina-
tion'? for which the result was originally intended. In spite
of its attractive features, the diffusion picture as formulat-
ed"~% achieved remarkably disappointing resuits for heavy-
particle termolecular ion~ion recombination.>

Apart from recognition that diffusion methods (based
on a Fokker-Planck reduction of the input-output collision
integral) are likely to be valid only when the collisional
changes in energy are small, the basic intrinsic defect for
application of the Pitaevskii expression to general mass sy-
tems remnains as yet undetected. Moreover, that a much less
sophisticated “bottleneck™ model’? originally designed also
for electron—ion recombination achieved much closer agree-
ment'® with the exact resuits of the Master equation®° for
ion-ion recombination presents a puzzle.

In this paper, the foundation of the diffusion approach
as applied to processes (1.1) will be examined and the basic
defect in previous applications will become apparent. The
proposed theory is valid for termolecular ion~ion recombin-
ation*'! and ion-atom association'* at low gas densities and
as a case study will be applied here to ion—~ion recombination.
Association at rate coefficient @ (cm’ s™') and dissociation
at frequency k (s ') in Eq. (1.1) are treated in a unified way
s0 that equilibrium can eventually be established.

J. Chem. Phys. 87 (12), 15 December 1987 0021-0608/87/246947-10$02.10

Il. RATES AND CURRENT

The distribution n, (E,,t) per unit interval dE, of pairs
AB with internal energy E, at time ¢ is governed by the colli-
sional input-output Master equation®*'!13

d f‘
—n,(E )= — S, dE,
d"'l( 1s8) p v Gy

-D

where — Dis the energy of the lowest vibrational level of AB
relative to the dissociation limit taken as zero energy, and
where v, is the frequency per unit interval dE, for E, ~E,
transitions by collisions between AB and M. For bound
states dn,/dt = dn,/dt, and for dissociated states dn,/dt

= (9n,/3t + F,) where F, is the net flux of contracting E,
pairs created with infinite separation. A basic expression for
the rate R *(r) of association has already been derived.'® In
the interests of elucidation and completeness of the present
discussion (in Secs. III C and IV) and of direct comparison
with the diffusional quasi-steady-state approach, the key
steps therein are provided below. The first step involves writ-
ing the net rate for association as'®

w7 (28

=aN, ()Ny (t) — kn, (1), 2.2)
where P? is the probability of stabilization of E, pairs by
subsequent multicollisions with M. The effective two-body
rate constant for the association of A and B with (cm~?)
concentrations N, (t) and Ny(1) is @ (cm®s™?), and &
(s™") is the frequency for dissociation of those tightly bound
pairs of concentration s, (¢) which are considered to be fuily
associated with energies E, within a block of % of low lying
levelsin arange — S >E,; > — D within which the stabiliza-
tion probability P§ is calculated to be unity.

The separation between the energy levels of AB is suffi-
ciently small compared to the thermal energy (kT) of the
gas bath so that the levels form a quasicontinuum. Thus,

d ;]
—n(E ) = —-éz,-‘—J(E,.n, 2.3)

dt
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so that the upward current past level £ at time ¢ is
L3 &
JED = J dE, f S, (DdE,,

since J vanishes at theendpomts ( — D, ) and since S,
+ Sﬁ =0. .

On introducing the normalized distribution

v.(t) =n,(E)/8,(E), (2.5)
where 7, is the pair distribution under full thermodynamic
equilibrium with the gas, the Master equation (2.1) is

2.4)

d r=
7 EN = -, [7:(8) — ¥ (0))C, dE,
a

= — -—-—J‘ E.1, 2.6
3E, (E.t) (2.6)
where the one-way equilibrium coilisional rate
Cy=hvy=hvg =Cg 2.7

satisfied detailed balance. The second step is to introduce the
ansatz'®

y,(8) = PP [NA(t)Na(t)] ps [n,.(t)]

N\ Ny

£ s

t— o

17':(') +Plrs(t) -1,

which holds at low gas densities. The equilibrium concentra-
tions of A and B are N, and Np. The probability that state i
is a stabilized state, or is a destabilized state with respect to
association is P? or PP = 1 — P?, respectively, and ¥, and
¥, are the normalized distribution of pairs in the fully disso-
ciated (source) block ¢, 0KE, < «, where P2 is unity, and
in the fully associated (sink) block %%, —S>E,> - D,
where P is unity. Hence, the Master equation (2.6), current
(2.4), and rate (2.2) separate as'®

(2.8)

d
2 e -10)]
» aJ,

% PS_PS$HC,dE, = — —", 29

J‘—D( i /) v “4=r aE’ ( )
J(—En =[r.() —7,(]
- -E

xf dE,f (P§—P}C,dE,,

-E -D

(2.10)

and
RAW) = [r.() ~7,(D)]

xf PraE, [~ pi-ppC, dE,
-D -D
(2.11)
From Eq. (2.9), the loss rates of fully dissociated and of
fully associated species of energy E, are, respectively,

dn, ®
7 [r:() —7,(0)]

X f C,PSdE, E,>0 (2.12)
-D
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and

dn,
———=— t) —¥. 1)
o = [r® 7.(0]

xf C,PPdE,, —S>E>—-D, (2.13)
-5

which illustrate quite effectively the significance of both the
stabilization and disruption probabilities P7 and P7.
From Egs. (2.9) and (2.10),
dn, ( 9y, )
—_—= = ¢ 4 f] (t) e )
a - e -rlop

where the time-independent background current downward
across E is

-E
—{(=E) = f dE,f (P§ ~ P$)C, dE,. (2.15)
g

From Eq. (2.11) the time-independent macroscopic coeffi-
cients a and k for association and dissociation in Eq. (2.2)
are, therefore, given by the basic expression,

(2.14)

aN, Ny =f DPde,f D(P;‘-Pf)C,,dE,:ki,
(2.16)

and satisfy (macroscopic) detailed balance.

The expressions (2.10) and (2.11), or equivalently Eqgs.
(2.15) and (2.16) for the current j and rate coefficient a are
in general not identical unless the following additional re-
quirement is satisfied.

A. Quasi-steady-state (QSS)

As Eqgs. (2.12) and (2.13) illustrate, the distribution of
pairs in blocks ¥ and .7 are time dependent, until full ther-
modynamic equilibrium is established when 7., —1 from
above and below, respectively. Since dn,/dt =dn,/dt for
the intermediate block & of highly excited levels with energy
E, in therange 05> E> — S then quasi-steady-state (QSS) in
block & requires

dn,

— =0, 03E>-S 2.17
ar 2L - ( )

so that the stabilization probabilities in Eq. (2.9) then rigor-
ously satisfy the integral equation

pff C,dE, = Jc C,P7dE; 0>E,>-S.
-D -D
(2.18)

The stochastic probability for stabilization £ of state /
is therefore the fraction of all collisions which eventually
result in association. Under this circumstance it readily fol-
lows that the rate (2.11) reduces to

RAt) = —J(—E\), (2.19)
the downward current (2.10), and that the rate coefficient
(2.16) is given by

aN Ny = —j( - E), (2.20)
where E is an arbitrary energy level in block &
(0>E> - S).

The rate of association (2.16) may be identified with the
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current (2.15) only when the QSS-condition (2.17) for the
probabilities is satisfied.'® Use of Eq. (2.17) from the outset
in Eq. (2.2) also illustrates this relation,

-5 1dn
R* =f —-')a:
) _ pr 11

=J(-8t=—J(—-Ey), (2.21)

although the basic expression (2.16) for a cannot then be
deduced. An exact expression which emphasizes the role of
the current J is obtained from Egs. (2.2) and (2.3) to give

" aJ, (t)
R4 =_f S( ’ )dE,-
(t) L SE

P}
= J; dE,, 2.22
J‘_)s (8 (aE, ) i (2.22)

since J; vanishes as E, - — D and «, and since P is con-
stant (0 and 1 within blocks ¥ and %, respectively). Only
when Eq. (2.10) for J is constant over block &, i.e., when
QSS Eq. (2.18) is satisfied, does Eq. (2.22) reduce to Eq.
(2.19). It may be shown (work in progress) that the QSS-
condition (2.18) corresponds to a minimum'® in Eq. (2.16)
for a. Any approximate P ¥ which does not rigorously satisfy
Eq. (2.18) will therefore yield higher rates a.

The QSS (minimum) rate coefficients are therefore giv-
en by

a N Ty
x -E
=f dE,f (P§— PH)C, dE, = ~j( —E)
- E ~D
(2.23)
- f dE, f CPSdE, = —j(0) (2.24)
L] -D

-5 L)
=f ds,f C,PPdE, = —j(~$) =k, i,
-D -5
. (2.25)

which are, in general, different from Eq. (2.16) unless the
probabilities P} exactly satisfy'® the QSS-condition (2.18).
Note that Eq. (2.24) is the QSS rate for association that
would result from the full equilibrium concentration N, N,
of dissociated pairs and zero population of fully associated
< pairsie., y. =1 and ¥, =0 in Eq. (2.8). Similarly, Eq.
(2.25) is the QSS rate for dissociation which would result
from an equilibrium population , of associated . pairs and
zero population of dissociated pairs, i.e., ¥, =0and y, = 1
in Eq. (2.8).

The aim is now to derive a simple analytic but approxi-
mate expression for j( — E) by converting Eq. (2.15) from
an integral representation to a differential representation so
that approximate expressions for the probabilities P may be
derived, in contrast to the exact numerical solutions of Eq.
(2.18).

. FOKKER-PLANCK REDUCTION FOR ION-ION
RECOMBINATION AT LOW GAS DENSITIES

The conversion of the integral operator in Eq. (2.13)
into a differential operator achieved by a Fokker-Planck
analysis’? is useful when the collision kernel C,/ favors small

changes in energy. Here the current J, in Eq. (2.6) can be
determined to fourth order, rather than to the customary
second order.?

A. Fokker-Planck current to fourth order in energy-
change moments

On introduction of an arbitrary but well-behaved func-

tion ®,(E,) whose derivatives vanish at the end points
[0, — D], then, with the aid of Eq. (2.6),

f ¢,f"_'dE
=f y,dz,f (®, - ®,)C, dE,. (3.1
-p -b
On expanding the difference
oo l "o
O —®,=3 L (E~E) ] (3.2)
re ,,Z.n! it [agl

as a Taylor series in energy change (E, — E,), assumed
small, and on integration by parts with the explicit recogni-
tion that (3"®,/3E}) -0 for n>1 a3 E, - [ =, — D], then
Eq. (3.1) can be expressed as

dn
J’ @, ZLaE, = (10" ,_J' q>,a—E’dE,.
(3.3)
where the current is
. ar D(n+l)
J(E=Y (-8l ] (3.4)

n=0 3E','

in terms of the normaiized distributions ¥, and the energy
change moments®™*

D}M)(El) =—1—J. (EI_EI )"'CV dEf’ (3.5)
ml -D

with respect to the one-way equilibrium rate for £, ~E,
transitions. The number per second of all collisions with an

. equilibrium distribution of E, pairs in unit interval dE, and

unit volume is D {®; and D" and 2D (*' are the average
energy change and average energy change squared per sec-
ond, d {AE )/dt and d (AE?)/dt, respectively. The ratios
D{V/D(® and 2D {*/D{® specify (AE,) and (AE?) per
collision, respectively.

Evaluation of these moments can be facilitated by
adopting the expressions for C,, which correspond to various
A-M and B-M binary interactions (symmetrical resonance
charge-transfer,>'® hard-sphere,'® polarization'!). They
can be collected under a universal form (work in progress).
These moments are normalized'® to the quantity
(=D"Tar (kD)™ "' N, N, wherea is the Thomson rate
[Eq. (4.1) below], where I is a dimensionless mass factor'®
and where T is the temperature of the gas bath.

Figures 1(a) and 1(b) illustrate the general trend of
these moments calculated here for the specific case® ' where
internal-energy changes in an ion pair (X*~X") are due to
symmetrical resonance charge-transfer (X*-X) collisions
with a parent gas X. In this case, the velocity vectors of the
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FIG. 1. (3) Normalized moments D '™ of energy change rate (energy™
s~ '), m = 0-4, as a function of internal energy £, = — A(kT) of the bound

ion pair. (b) Aversged energy change and energy-change squared
D™ /D" per collision, D'" and derivative of D ‘. Equal-mass specics and
charge-transfer ion—neutral collisions are assumed and moments are nor-
malized to the quantity ( — 1)"Fa (k)" ~' N, N,.

(fast) ion X* and the (thermal) neutral X are inter-
changed.® Large transfers of energy are therefore involved,
asis confirmed by D (¥, the averaged energy change squared
{AE?) per second shown in Fig. 1(a). This case will there-
fore provide a most stringent test of the weak-collision (dif-
fusion) procedure adopted here.

As the binding energy — E, decreases from the disso-
ciation limit (at zero energy), the equilibrium density A(E,)
~|E,|~** exp( — E,/kT) per unit interval dE, decreases
from infinity, reaches a minimum at E, = — 2.5kT and
then increases exponentially.'® Since the energy change fre-
quency v, for each pair decreases rapidly with increase of
binding, the overall shapes of the equilibrium moments D {™
in Figs. 1(a) and 1(b) reflect the variation of the product
A,v,,. Note that the equilibrium collisional rate D {* is rela-
tively constant in the range ( 1.8-4)kT of binding. Also D {
=~d /dt (AE) is positive for E, > — 1.4kT = E*, so that
these pairs on average become less tightly bound upon colli-
sion. Pairs with E, < — 1.4kT become more tightly bound
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FIG. 2. Inverses of moments (a) D'® (1) and (b) D'*' (1) as a function of
internal energy E, = — AkT of the ion pair for various ion-neutral interac-
tions: POL (polarization), HS (hard-sphere), CX (charge-transfer).
Equal mass species are assumed.

upon collision (since D {! <0). This critical energy specifies
the location of E * of a bottleneck where the averaged energy
change vanishes and where the region E, > E * where excita-
tion is greater is separated from the region E, < E * where
deexcitation is greater. Note also that the even moments
D (™ display minima which become sharper with increase of
m, as expected, and that the minimum in D =id/
dt (AE?) coincides with the zero of D ("’ ~d /dt (AE,) at
E*, asis clearly shown in Fig. 1(b). These features are quite
general for the various ion—neutral interac*ions and are uti-
lized below.

Figures 2(a) and 2(b) illustrate the variation of
[P{]~"and [D{¥] " for different interactions of A and
B with M (charge-transfer CX, hard-sphere HS, and polar-
ization POL). The bottleneck to- D (¥ occurs where the
(AE}) rate is least and in roughly in the same location (E,
~1.25kT) for all the interactions. The (AE ?) rate is great-
est for the charge-transfer interaction and weakest for the
polarization attraction, as expected. The moment D {* ex-
hibits similar but more rapidly varying behavior.

Since C, is symmetrical in / and f—the detailed-balance
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relation (2.7)—then C;,, when expressed as a function of the
energy-mean E =|(E,+ E,) and the energy change
A=E,—E, is such that C,, =C, (E,|A|) as previously
noted by Keck and Carrier.? On expanding C,, about E, in
terms of the expansion parameter A, which is assumed small,
then

- s a"c,
CAE=E +iAjA]) = 2 ( )(aE:)’
(3.6)

where C, is C,(E = E,,|A|). The general moments (3.5) are

therefore determined from
m'D (™ (E,)
nF§m+n)
= (2"’3!)—.[2—5?;—]: m odd, (3.7a)
n=133 i
even . aanm-o-u)
= % (Z"nl)"[T] ; meven, (3.7b)
R= 4 i
which involves only the terms

F{"(E)) '--J’ A’C,(E,|ANdE,, (3.8)
-D
with s even. Terms with s odd vanish since D is effectively
infinite ( ~5 eV).
For equilibrium, ¥, in Eq. (3.4) is unity and the equilib-
rium current can then be expressed, with the aid of Eq. (3.7)
as

. - anD'(n+l)]
= =
= 5 o228

= “f‘; "i (n =227 (n+ 210/ + DI~
n=02 /=02

a[+n+ll,-t(j+u+1)

XW . (3.9)

This new form clearly shows that the coefficient of its
first term JF {*/JE,, which arises from the leading term of
the expansion (3.7) for both D {*’ and 3D {*'/3E,, is identi-
cally zero. The coefficient of the second term 3°F ('/3E?3,
which is the net balance of the second term in the expansion
(3.7) forboth D {*' and 3D {*'/3E, and of the leading term in
the expansion (3.7) for both 32D {¥/9E } and 3°D (*' /IE 3,
is also zero. The leading nonvanishing contribution to Eq.
(3.9) is [ — s},d*F {*'/3E }] which is the net balance of the
third terms in the expansion (3.7) for both D { and aD (*/
JE, and of the second terms in the expansion (3.7) for both
3’D{V/3E} and 3°D|¥/3E}. The consistent neglect of
a*‘D'*/3E : ~3°F(®/3E} and higher-order derivatives
demands both the neglect in Eq. (3.4) of terms with n> 4
and the neglect in Eqs. (3.7a) and (3.7b) of terms with > §

and n > 4, respectively. Hence, the equilibrium current

D
3E,

ale(J)
JE?

D

Ji=D" —
JE}

=0

(3.10)

is exact to fourth order in the moments and is identically
zero! Relationships between even and odd moments can be
obtained from Eq. (3.7) by neglecting F{* and higher

6951
terms, i.e., D *’ and higher moments, to give
J a*p,‘"]
DM = D@ ! in
: aE,[’ 3E? A1
and
aJ
DP=2—D", (3.11b)
‘ 3E, !

which also ensure zero equilibrium current. In view of Eq.
(3.11) note that equilibrium (J, = 0) is obtained only when
the current (3.4) is expanded to even order.

With the aid of Eq. (3.10), the nonequilibrium current
(3.4) to fourth order in moments D {™ is

I (Ept)
_ [D }z) aD (J) ZD [$))] [ ]
""3E, / dE} IE,
aD{¥] [3% d%
o -3 ][ 1 -2 3
+[ T %E, | |E? 3E?
which is the differential representation (up to and including
the fourth-order moment D {*’) of the double integral

](3.12)

© {3
J(E,z):f dE,f [0 = 10]Cy dE, (3.13)
| | dE |

for the exact current (2.4). The differential form (3.12) is
the Fokker-Planck curreat to fourth order since the general
Fokker-Planck expansion can be employed for any variable
whose changes are small in comparison with averaged char-
acteristic values, e.g., the collisional energy change A here is
assumed small relative to the thermal energy kT of the gas
bath.

Upon use of the approximations (3.11), which are inter-
nally consistent to neglect of moments higher than D {*), Eq.

(3.12) reduces to
aZD‘(4)
"7 OE? ] [as.]

k) [azr’] - 4) [ﬁ]
JE? JE?]

(3.14)

Inserting the ansatz (2.8) in Eq. (3.12), then Eq. (2.6)
with Eq. (3.12) yields

J,“)(E,,t) — [D’(Z)

dn (E.ty (E))

- - r,(r)] aE . (319)

where in terms of the stochastic probability P2 that state i
dissocia‘es, the time-independent background current to
fourth order is

j;‘)(EI)
[D(z) 26D;” aID‘(G) [alpf)]
! JE, JE,
aD 1 [aPP J°P®
+|D® -3 - ][ ']—D“’[—'].
[ ‘ 9E, ) | oE? ‘1 eE?
(3.16)

J. Chem. Phys., Vol. 87, No. 12, 15 December 1987

42




<

——————— —— —— o @ . L

8952 M. R. Flannery: Termoiecular association

B. Diffusion equation and current for termolecular
recombination

On ignoring moments D {* and higher, the (diffu-
sional) current (3.16) is

. po aPs
JoE) = —D:?’%—w;“&;. 317
i f
so that Eq. (3.15) is
dn,(E,t) ’ 3 [ apf]
——— 35 —_ — DgZ) ,
r [7.(0) = v. (D] A A
(3.18)

which is a diffusion equation in energy space. The moment
D® =)d/d: (AE}) is the diffusion coefficient (en-
ergy’ s~ ') in energy space. This type of streaming equation
has been previously derived via other techniques by Pitaevs-
kii! for electron-ion recombination under highly nonequi-
librium conditions when . > 7, so that 7, = PPy, in Eq.
(2.6), and by Keck and Carrier* for heavy-particle associ-
ation/dissociation. It has been investigated by Landon and
Keck,? by Mahan®, and by Bates and Zundi® for highly non-
equilibrium (7, »¥,) termolecular ion-ion recombination.
By explicitly including here the factor (y, — 7, ) via the an-
satz (2.8), Eqs. (3.15) and (3.18) for all ¥, heip to empha-
size the evolution via termoiecular recombination and disso-
ciation (into ion products) of the subsystems (A-B)
towards thermodynamic equilibrium with the gas M, at-
tained when 5, =y, - 1.

Another advantage of the ansatz (2.8) is that the inter-
mediate block of highly excited levels can be taken to be in
quasi-steady-state (QSS), i.e., dn, /3t ~:0in either Eq. (2.9)
or (3.18), for all times. The QSS-diffusional current (3.17)
is.constant over &, so that the solution of Eq. (3.17) subject
to conditions,

PP(—8)=0, P} -5 =1 (3.19)

g,
PNE) = -j,,U dE/D"’(E)] =1—-P3(E),
-3
(3.20)
where the subscript d denotes quantities associated with the
diffusion equation (3.18). Various levels of approximation
readily follow:
(a) Since
PP(O)=1, P}0)=0, (3.21)
then Eq. (3.20) yields

-1
_,*‘n..[rsa/pﬂ’(s)] =a,N, Ny (3.22)

for the downward diffusional current which, when com-
pared with Eq. (2.20) provides the recombination rate a, of
Pitaevskii,' adopted for ion—ion recombination by Landon
and Keck® and by Mahan.® Note that the current (3.22) is
the inverse of the area under the curves in Fig. 2(a), and that
Eq. (3.20) for the stabilization and disruption probabilities
P}P at energy E, are the respective ratios of the areas which
correspond to the energy ranges (0—E, ) and (£, « — S) to
the total ares.

(b) Rather than requiring Eq. (3.21) for the probabili-

ties, j, in Eq. (3.20) can be fixed by inserting Eq. (3.20) '

directly into Eq. (2.24) for j(0) to give

—j(0) = J' " dE, f C,dE,+j.J. dE,
0 -D 0

B,
xf c,,dE,U'dE/DZ(E)}. (3.23)
-D -5

On equating the exact current j(0) in Eq. (3.23) with the
diffusional current j,, then

_g*)(o).-_U'dE,r C,,dE,”l+f dE,
(] -D 0

B, -1
% _r c,,dE,f ! dE/D‘z’(E)}
-D -5

=ayNy Ny, (3.24)
which yields the expression of Keck* for . The term in
braces, { }~! is simply the ratio of the downward diffu-
sional current to the one-way equilibrium current across the
dissociation neck.

(c) Another possibility in similar vein to (b) is to insert
Eq. (3.20) directly into Eq. (2.25) for j( — S) to give

-5 @
jn=s1=[["ag, [ c,as)]
-D -5

-5 .
x[1+J' dE,r C, dE,
-D -5

’ s -1 -~ -
xf dE/D’(E)] =a N Ny, (3.25)
-5

where the term in braces, { } ', is simply the ratio of the
upward diffusional current across — S to the one-way equi-
librium current upward across — S.

The feature common to all the above procedures (a)~
(c) is that the required current (3.17) depends upon the
accuracy of the gradient (dPP/dE,) which, due to the ne-
glect of higher derivatives in Bq. (3.16), is described by the
diffusion equation (3.18) less precisely than are the actual
diffusion QSS solutions, i.e., Eq. (3.18) may furnish accu-
rate P? but relatively inaccurate derivatives. More imporr
tantly, however, is that Eq. (2.20), which is valid only under
exact QSS-condition (2.18) of the exact Master equation
(2.19) has been invoked for the diffusional currents j5”’ of
Eq. (3.22) and j$* of Eq. (3.24) which are QSS solutions of
the different snd approximate diffusional equation (3.18).

The QSS solution of Eq. (3.18) subject to both con-
straints (3.19) and (3.21) is

-1
PS(E) = { r dE/D"’(E)][ _r dE/D"’(E)}
&, -8
(3.27)

for the probability that any level £, in block ¥, once ac-
cessed by collision, has “associative™ character. The proba-
bility that level E, has *‘dissociative” character is the com-
plementary function

K, -1

P‘,’(E,)=U dE/D“’(E)”f dE/D“'(E)} .
-5 -5

(3.28)
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Thus, both functions are constrained to vary monotoni-
cally between zero and unity as does the exact numerical
solution to the integral equation (2.18) so that, when com-
pared with the exact numerical values, will involve less error

than their corresponding derivatives
aPA.D
—5 = FPE} (3.29)
1]

appropriate to currents (3.22) and (3.24) in schemes (a)
and (b) above.

C. Calcuiations for termolecular recombination at low N

The well developed case® ' of termolecular ion-ion re-
combination

A*4+B +M-AB+M (3.30)
serves as a case study for assessing the accuracy of the diffu-
sion approaches of Secs. I1I A and III B. The recombination
coefficient a has previously been represented™!’? very accu-
rately by the sum

a=a,+a, (3.3
of coefficients a, obtained by considering separate contribu-
tions from (A*-M) and (B~ -M) binary collisions (i =1
and 2, respectively). The exact numerical rates a, are ob-
tained by inserting the exact numerical solution of the inte-
gral equation (2.18), the QSS condition into Eq. (2.32) for
the current j( — E, ). The rates a, have been tabulated® as
a function of the mass-ratio parameter:

o, =MM,/M, (M, + M, + M,), (3.32)
where M, are the masses of species A+, B~,and M, i= 1,2,
and 3, respectively and where the set (i, j) isequalto (1,2) or
(2,1) for (1 — 3) or (2 — 3) collisions, respectively.

Expressions for the equilibrium rate C,. appropriate to

the three classes—polarization,'* charge-transfer,'* and -

hard-sphere!®—of ion~neutral interactions have been pre-
viously derived.*!" Calculations have been performed here
for the exact QSS-rates @, that rise from -3 collisions and
for the corresponding diffusional tates, (3.22) for a, and

(3.24) for a, of Pitacvskii' and Keck,* respectively. Little
discernable difference was found between @, and a, which
may now be simply called the diffusional rates a, obtained
when the diffusional current (3.17) is inserted in Eq. (2.20).
Previous results®'! were based on the solution of, at most, 36
coupled algebraic equations, the discretized equivalent rep-
resentation of Eq. (2.18). Present calculations solve 100
coupled equations required for convergence in a for small
and large mass parameters (3.32).

Table I provides present values of the ratio a,/a, for
the various interactions over the full range of mass param-
eter g,. Small a2 10~ carresponds to collisional recombin-
ation of heavy ions (M, =M, > M,) in a much lighter (elec-
tron) gas, intermediate a( =1/3 for M, =M, =M,)
corresponds to normal mass components, and large ¢ = 10°
for M, &M,=M; corresponds to electron—ion recombina-
tion in an ambient gas. The cases of small and large a involve
energy transfers which are very much less than the energy
kT of the gas so that the diffusional (weak collision) ap-
proach is likely then to be valid.

As Table I shows, the diffusional rates are reliable, as
expected, only for recombination in a vanishingly light gas
(a=10~?) or for electron~ion recombination (a=10’) ina
general gas, the case for which Pitaevskii’ designed his diffu-
sional treatment. The diffusional rates are higher by between
a factor of 3-9 for intermediate a~ 1. As the ion—neutral
interaction varies from polarization attraction to hard-
sphere repulsion and then to charge-transfer interaction, the
energy change in the ion—-neutral collision becomes progres-
sively larger [see Fig. 2(a) and 2(b)] so that the diffusional
rates (based on weak collisions) become less accurate, as
shown directly by the variation of entries in Table I for a
specified mass parameter a.

Since Eq. (3.17) predicts zero current in both the fully
dissociated and fully associated blocks, ¢ and .#, respec-
tively, the diffusional current (3.17) is therefore discontin-
uous, zero in ¥, j, in & and zero in 7. The diffusion rates
(3.22) of Pitaevakii and (3.24) of Keck are therefore expect-
ed to be valid only in the limit of vanishingly small currents
and rates a of recombination. This is confirmed in Table I for

TABLE L Variation of the ratio (a,/a, ) and (@gy/a, ) with mase-ratio parameter & for 1-3 collisions and
mmmn—smmﬁm(mn.mm(m) and symmetrical resonance charge-
bottieneck

tranafer (CX). The exact, difasional, and

rates are ag, @p, and dgy, respectively.

ay/ay Gy /ay
e POL* HS* cx* POL HS X
0.001 1.00% 1.013 1.030 32.447 25.182 16.996
001 ' 1.163 1.222 1.321 8.369 7.336 5.513
01 213 2739 isn 3.354 2939 2.384
13 3.360 4.967 6.840 2.541 2215 1.865
10 4.060 6.604 9. 17: - .31 2015 1.722
100 2131 3.510 3.354 2.746 e
1000 1163 1.488 .ee 8.36% 6.302
1000.0 1.001 1.093 e 32.447 20.233

*In POL and HS, smaqll ¢ impliss ion-ion recombination and (~10%)
in a vanishingly light gas and large ¢ implies

recombination in & normal-mass gas.
*In CX small ¢ implies M, <M, -M,udc- 1 implies M, > M, = M,
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the limiting cases of small and large a. Then theactualrate
for electron-ion collisional recombination in a gas is’ a,
~10~°cm® s~ at STP, which is three orders of magnitude
less than the rate @z ~ 10~ % cm® s "' at STP (cf. Ref. 19) for
non-lon recombination a gimilar mass gas.

Another reason for the inadequacy of the diffusion ap-
proach as previously applied to general-mass cases is also
appareat. As Figs. 3(a) and 3(b) show, the diffusion equa-
tion (3.18) in general furnishes fairly accurate probabilities
P4 Eqgs. (3.29) and (3.30), but less reliable gradients
dP{°/dE,.

In an effort to assess the relative importance between
using relatively accurate distributions P} within the integral
(2.23) or differential (3.17) forms of the collision integral of
the Master equation, assume that the intermediate block #
between blocks ¥ and ¥ is absent, i.c.,

—E<E <>
~D<E, < —E’

where — E is some bound energy level. The current (2.15)
then reduces to

- -~ E
—jan(—E) =J. dE,f C,dE,
-z -0

=apn (E)NANB'

PYE) = {(:' (3.33)

(3.34)

which is the one-way equilibrium downward current across
level — E. As — E is varied, this current achieves a mini.
mum'® at energy — E® (= ~ 2kT) which therefore acts as
a bottleneck'? to the recombination which proceeds at rate
apn (E*). The ratio of apy at the bottieneck E * to the exact
numerical rate a, is displayed in Table I for the various
interactions. The bottleneck method fails quite markedly for
small and large mass parameters a, where the diffusion cur-
rent is by contrast successful, and becomes much more reli-
able than the diffusion approach at intermediatea( = 1). For
a given g, less error is involved for stronger collisions in har-
mony with Eq. (3.34) being a strong collision approxima-
tion. Since Eq. (3.33) assumes the least possible knowledge
of the probabilities P¥(subject to the constraints) but an
integral form (3.34) to the collision rate, it follows that fairly
accurate distributions are required at small and large g
where the collision rate and dynamics are weak, so that the
discontinuous integral form (2.23) does reduce indeed to
the continuous streaming form (3.17). For intermediate a
when the energy changes are certainly not weak, inclusion of
the integral form (2.22) is apparently more important than
the use of fairly accurate distributions (which in any event
are constrained to vary between unity and zero at the boun-
daries of block & ). Note also that the diffusional and bott-
leneck results are always greater than the exact QSS rates, in
accord with predictions of the variational principle recently
proposed.'* The bottleneck method provides the Jeast of the
one-way equilibrium rates—the least upper limit—across a
bound level. The diffusion method incorporates the effect of
the net downward-upward collisional transitions.

The closeness exhibited in Fig. 3(a) between the diffu-
sional probabilities, (3.27) and (3.28), and the exact nu-
merical probabilities may be utilized in two ways. First, an
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FIG. 3. (a) Probabilities P*° for stabilization and dissociation of an ion-
pair bound with energy E, = — 1k7. Equal-mass species and charge-
transfer ion—neutral collisions are assumed. —: Exact QSS solution of Eq.
(2.18). - - -: Diffusional approximation, Eqs. (3.27) and (3.28). (b) De-
fivatives (dP’/dl) of stabilization probability £°. From numerical solu-
tion of Eq. (2.18) and from diffusional spproximation, Eq. (3.29).

iterative procedure*

P‘"“(E,)f c,,ds,af P"(E,)C, dE,
-0 -D
(3.37)

to the solution of the integral equation (2.18) can be devel-
oped by using the diffusional analytical probabilities (3.27)
as the starting (# = 0) solution. It is found here that conver-
gence to within 1% of the exact solution can be in general
achieved after five iterations, so that accurate rates can then
be determined from Eqgs. (2.23)-(2.25) since the QSS—con-
dition (2.18) is satisfied.

Since the diffusional probabilities (3.27) and (3.28) are
reasonably accurate, a second possibility is to insert them
directly into the current (2.23). This procedure, at first sight
attractive, is however inconsistent, in that the diffusional
probabilities while satisfying quasi-steady-state (QSS) of
the diffusional equation (3.18) in block &, do nor satisfy the
condition (2.18) for QSS of the Master equation (2.9) on
which Eq. (2.23) relies. The resulting current (2.15) will
therefore not be a constant in block & . This is demonstrated
by Fig. 4 which compares the exact downward current

—ja(E,) past level E, obtained from the solution of Eq.
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(-E/uT}

FIG. 4 Comparison of currents, Eq. (2.15), past cnergy level
— E = — AkT, obtained (—) from exact solution of Eq. (2.18) and from

(---) diffusion probabilities Eq. (3.27). Equal-mass specics and hard-
sphere ion-neutral collisions are assumed. The current is normalized to
(2a,N, N, ) where a, is the Thomson rate, Eq. (4.1).

(2.18) in Eq. (2.23) with the approximate downward cur-
rent —j,(E,) obtained by_inserting Eq. (3.27) in Eq.
(2.23). The diffusional current through the bound levels is
far from constant over the block & of highly excited levels
and hence, Eq. (2.20) cannot be used for steady-state rates.
The figure also shows that assignment of a bound level E, for
determination of @ from Eq. (2.23) is uncertain. Since the
current j( — E) exhibits a very rapid variation in the neigh-
borhood of the dissocistion limit (at zero energy ), use of Eq.
(2.24) forj(0) is therefore a risky procedure, the exact value
of j(0) being ~50% higher than the approximate j(0).
Some defense can be made by calculating Eq. (2.23) at the
bottleneck energy £ ®* ~ — 2kT where the diffusional and ex-
act currents agree. This adoption is however not firmly
based.

The basic reason for the inconsistency of using the diffu-
sional probebilities (3.27) in Eq. (2.23) is not that the diffu-
sional probabilities are not sufficiently accurate for useful
application, but is that the expression (2.23) based on identi-
fying the association rate with the current is not appropriate
for the use of approximate probabilities, which do not satisfy
the basic condition (2.18) for such identification.

V. BASIC RATE WITH DIFFUSIONAL PROBABILITIES

The exact rates a, obtained in Sec. III C from Eq.
(2.18) in Eq. (2.23) for the various ion—neutral interactions
are normalized''! to the corresponding Thomson rate

ar =47(R,/B)’(3kT /M,;)\ ?oN, B=13/2, (4.1)

where R, is'the natural unit (¢*/kT) for Coulombic attrac-
tion between the ions 1 and 2. The integral cross section o,
fotl-Jelnnceonmn:nmhnvemgy(gkﬂ is taken in
Eq. (4.1) tobe 20%, 27( pR,/3)"*?, and 0¥, respectively for
wmwmcw«coummthm
section o, for polarization (orbiting) collisions in terms of
the polarizability p of the gas M, and for hard-sphere colli-
sions with cross section o2,

Approximate rates a, may now be determined by in-

P — v
. - ory:
-
M.A Termolecular association
bt " AN RS BN
F =x ]
12f ' 8 : :
L A : :
§ o . e > |
1 R I
2d osl- DIFFUSIONAL . :
H: a
84 |
.« T : PARAMETER
g ME 1 | "
: : g
p ] .0 . ‘
- ] 109 102 107 100 10! e e
lo' Ao - l5 — ;o

FIG. 5. Normalized rates Ry, Eq. (4.2), for ion-ion recombination in a
dﬂmp‘ulhnedﬁdm.mma.!q.(ln)favumm-

neutral interactions: HS (hard-spbere), CX (charge-transfer) and POL
(polarization). —: exact rates. O, O, A: rates obtained with diffusional
probabilities, Eq. (3.27), in basic Bq. (2.16) for HS, CX, and POL interac-
tions.

serting P}, the diffusional (approximate) probabilities
(3.27) into the basic expression (2.16) which does not rely
on the use of exact (QSS) P;. Figure 5 displays a compari-
son of the corresponding ratios,

= (M\/M;)(a/ay), , - (42)

where a is taken as the exact rate a; or the approximate rate
a,,, which arises from 1-3 collisions. The exact rates repro-
duce those previously presented.'®!' The present study
adopts a 100-point quadrature throughout, rather than 36
and 18 used in Refs. 10 and 11, respectively, in order to
obtain convergence at small and large a.

Excellent agreement between a, and a, is obtained
over the full range of the mass parameter 2, Eq. (3.32) fora,
all the way, from a = 102 for association of heavy ions in a
light (electron) gas, to intermediate g~ 1/3 for equal mass
species and up to large a= 10° which corresponds to elec-
tron—-ion recombination in a gas. As expected, greatest de-
partures occur for the case of equal mass which involves the
largest energy transfer so that the diffusional probabilities
would also show their greatest departure from the exact
probabilities as in Fig. 3(a). For this case (a = 1/3), the
diffusional result corresponding to hard-sphere collisions,
which in turn involve largest energy transfers (cf. Fig. 2),
exhibit the largest of small departures. The present diffu-
sional treatment is also excellent over all of the various
classes of 1-3 interaction considered.

V. ION-ATOM ASSOCIATION AT LOW GAS DENSITIES

The above theory may now be suitably modified to cover
ion—atom association

A*+B+M7AB++M ;.1

of atomic species A* and B in a low density gas M. In con-
trast to ion—ion recombination (3.30) where an equilibrium
distribution over internal angular momentum L, is estab-
lished'? the A*-B attraction can support centnfupl bar-
riers 30 that nonequilibrium distributions », (E,,L %¢) over
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both E, and L? must be acknowledged. Thus, the ansatz
(2.8) is replaced by

"I(EDL-'Z;‘)
(B, Lty = e i)
O YT )

+PHELDY.(D) = L, (52)
where PS=1— PP, the probability of stabilization of
(E,,L?) pairs by subsequent multicollisions, is zero for dis-
sociated pairs and unity for fully associated pairs.

Bates and McKibbin'* found that a delta function ap-
proximation 8(L} —L}) for (E,.L]—E,L}) transitions
was quite satisfactory. The above analysis in Secs. III A and
III B for energy change alone can then be immediately modi-
fied to yield corresponding resuits for the stabilization prob-
abilities PS(E; L ?) for quasibound and bound states. Thus,
the diffusion approximation for the bound and quasibound
level yields

LA
PS(E.LY) = U dE/D"’(EL,’)]
E,

=P2ELYHy. (1)

v, 1

X U dE/D(E,L ,’)] , (5.3)
-5

where U,(L?) is the energy at the top of the centrifugal

barrier of the effective interaction

V,(R) = ¥V(R) + L}/2mR>. (54)

In terms of C, the one way equilibrium rate per unit
dE,dL}dE,dL} for (E,L}-<E.L?%) collisional transi-
tions, the diffusion coefficient is

DE, LY} = .;- J'-D (E, — E)*dE;,

Li

&
X X C;/(EuL iz;EpL})dL}y (5.5)

where L, is the maximum angular momentum for fixed &,
For dissociated levels P35 is zero. The association rate corre-
sponding to the basic rate (2.16) is then given by

aﬁ,.fv.af daE, f"r,’a,‘f dE;

LYy .
x J; (P§—P$)C,dL}, (5.6)
where the stabilization probabilities P are given by Eq.
(5.3).

VIi. SUMMARY

On introduction of stochastic probabilities P2(E,)
that ion pairs A-B with internal energy E, will be stabilized
or disrupted by collisions with a thermal bath of gas M, and
upon the use of the ansatz (2.8) for their normalized distri-
butions ¥, (¢) at time 2, the basic Master equation (2.1), rate
(2.2) and current (2.4) has been transformed into corre-
sponding equations (2.9)-(2.11) which are separable in E,
and 1. The diffusional equation (3.18), yields, for systems of
general mass, accurate probabilities £ -2 but very inaccurate
currents (3.22)~(3.25) (cf. Fig. 3 and Table I). Identifica-
tion as in Eq. (2.20) of association rates a with current, is
valid only under QSS quasi-steady-state condition (2.18),

M. R. Flannery: Termolecuiar association

appropriate to the original Master equation (2.9). Since the
diffusional probabilities do not satisfy this condition, the dif-
fusional current in general, may not be identified with the
rate a. As Table I shows, the resulting diffusional rates
(3.22)-(3.25), are therefore not reliable*® except for those
cases in which the current is relatively small, i.e., for colli-
sion electron—ion recombination' in a gas and for ion-ion
recombination in a vanishingly light gas.

A new expression (2.11) or (2.16) derived'® for the
rates, is more appropriate for use under general conditions,
as when QSS is not satisfied. When QSS is satisfied, Eq.
(2.16) reduces to the current (2.23). The QSS rates are min-
imum (Ref. 18 and work in progress). The rate (2.16) is
required when approximate probabilities are used, as here.

The diffusional probabilities can also be used in an itera-
tive solution* of the QSS-condition (2.18) to provide highly
accurate probabilities (to within 1% ) after a few iterations
and hence accurate QSS-rates (2.23)~(2.25).

Application of the diffusionsl equation (3.18) to gen-
eral systems represents an accurate procedure provided the
solutions P2 are inserted in the appropriate and more basic
expression (2.16) for the rate, rather than into the derived
expressions (3.17) or (2.13) for the diffusional or exact cur-
rents. Excellent agreement with the exact numerical QSS
results for various classes of ion-neutral interactions over
the full range of mass parameters for general systems has
been obtained.

Finally, generalization (Sec. V) of the above analysis
Secs. 11 and I1I to cover the distributions #(E,.L },t) of A-B
pairs over their internal energy E,; and angular momentum
L, is straightforward. The resulting equations are appropri-
ate to consideration of ion-atom association of atomic spe-
ciesin a gas.
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Termolecular recombination: Coupled nearest-neighbor limit and uncoupled

intermediate levels limit
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Two extreme limits of collisional coupling in termolecular recombination are investigated. The
coupled nearest neighbor (CNN) limit includes only couplings between neighboring excited
energy levels of the associating species AB®, while the uncoupled intermediate levels (UIL)
limit includes only couplings between the fully dissociated reactants A* and B~ and each of
the (assumed uncoupled) excited levels of AB®, which are then coupled to the fully associated
products AB. Comparison is made with results of previous exact and diffusion treatments.

I. INTRODUCTION

Analogy with a mathematically equivalent electrical
network provides an effective framework whereby not only
can the complicated multilevel collisional dynamics intrin-
sic to a master equation treatment of termolecular recombin-
ation

At +B  +M-AB+M (L1

between atomic species A and B~ ina gas M be analyzed in
a different light' but also physically appealing models may
be readily constructed. In previous reports,® the (exact)
quasi-steady-state (QSS) master equation method,’ the cor-
responding variational method,? and an approximate diffu-
sional method* were considered. In this paper, two simple

"y

models prompted by considering the analogous electrical
diagram (Fig. 1)are investigated. So as to emphasize the
importance of collisional couplings between many excited
levels in a realistic treatment of process (1.1), two extreme
limits will be tested. The coupled nearest-neighbor limit in-
cludes only the coupling of a given excited level n with its
lower neighboring level n — 1. The Limit of uncoupled inter-
mediate levels includes only couplings from the (external)
source block ¥ of fully dissociated states of the reactants
A* and B~ to each of the excited levels 7 assumed to be
uncoupled within the (internal) block ¢ and then the cou-
pling from each of these uncoupled # to the (external) sink
biock ¥ of fully associated levels of the products AB (cf.
Fig. 1). The “intermediate’ levels comprise block & which
is intermediate between blocks € and .~°.

¢, = Vild=velt
1 Q, () =nc(d

“(t) F1G. 1. (R, C) Electrical diagram (Ref. 2)

appropriste to analysis of termolecular re-

Res combination, involving as an example, four
excited levels (n = [,2,3,4).

Aea
Acr
SPes
Va{t) = 74(Y)
G T a,i0=nv
19
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Il. CONSTRUCTION

Termolecular recombination (1.1) may be described*
via a time-independent treatment wherein equilibrium con-
centrations N, and Ny of the fully dissociated atomic spe-
cies A and B with relative energies E, in the range 0<E, < w0,
the reactant € block, are associated (a) by direct collisions
into the product block .# of fully associated molecular levels
in the range — S>E,» — D maintained at zero population
and (b) by a series of indirect transitions via the intermedi-
ate energy block & (05 E,; > — S) of highly excited levels.
The indirect mechanism ¢ —& —.7 is the most impor-
tant> at thermal energies since the rate of the large energy
transfers involved with direct € — % transitions is vanish-
ingly small, by comparison. The lowest energy level of AB is
— D, relative to the dissociated limit at zero energy, and
— S'is a bound level below which the probability P of colli-
sional stabilization of pairs in level E, is by definition unity.
The two key quantities are P which is unknown and the
one-way equilibrium rate C;, which is given® in terms of the
equilibrium number density of #, of levels of energy E, pet
unit interval dE, and the frequency v, for E; - E, transi
tions per unit interval dE, by &, v,,.

A hierarchy of approximate schemes are apparent via
consideration’ of process (1.1) in terms of the analogous
electrical diagram displayed in Fig. 1. Here IV discrete junc-
tions (& -block levels) n are at time-independent potentials
PS below the € block junctions C, all maintained at unit
equipotential (due to the assumed equilibrium concentra-
tions of A and B), or equivalently are at potentials
P2 = | — PS above the zero potential of the . block junc-
tions S (due to assumed zero concentration of AB). In terms
of these voltages and of the conductances C, = R ;' of each
clement of resistance R, the rate constant deduced? from
the power equation is then the effective conductance R ~' of
the mathematically equivalent network. It follows from con-
sideration of the power loss in the circuit that®

aN\ Ny = 3 J' dE, f (P} —P})C,dE,=R ~".

2.1

Since the overall voltage drop is unity in the time-inde-

pendent treatment, Eq. (2.1) is also the throughput electri-

cal current. Only when the N nodes i in block & obey the

Kirchoff current law, (KCL), or the following quasi-steady-
state (QSS) equivalent condition for excited pairs:

pff C,dE, = f C,P3dE, 2.2)
-D - D
does Bq. (2.1) reduce to — j(0), the energy-space current
a(O)N Ny = f ) dE, f C,PIdE, = —j(0)
0 -D

(2.3a)

across the dissociation limit at zero internal energy, or in
general to

- - B
a( —E)ﬁ,ﬁ,-j ‘dE,f ) (P§—P)C, dE,

= -j(—-E), (2.3b)
the constant energy-space downward current -i( — E),

across any arbitrary level of energy — E in block #. Two
extreme limits may now be constructed.

(A) Uncoupled intermediate levels (UIL) limit: When
the mainline entrance and exit channels of resistances R,
and R, defined in terms of collisional couplings by

t j "¢, dE,=C, (2.4)
0
and
-5

respectively, are only included in the network for indirect
passage between the reactant and product blocks ¥ and .~
via junction a, the current /, flowing past any of the uncou-
pled junctions » is given by

I[Rc, +Rs] =1, (2.6)
since the voltage drop (¢ —.7) is unity and since » is not
coupled to any other junction #’' of intermediate block .
The direct (¢ —-.7) current

- -5
L=R3' =J; dE, f c,dE, @n
-D

is normally negligible but can be given by expression (2.6)
since R,¢ vanish for all nodes fin block .#. The voltage drop
between junctions C and each isolated z is then
C
P$=IRg = —i—, (2.8)
* Co +Cous

to be used in the basic power expression (2.1) for the rate
constant.

Although expression (2.8) violates the KCL condition
(2.2) required for reduction of Eq. (2.1) to Eq. (2.3), the
QSS rate (2.3a) nonetheless provides the rate

C.
a, (0N, N, = Jo [(c "f’C‘ 1 (2.93)
<f /s
=[ f Da,dE,]Tv,N, (2.9b)

which has several exemplary features. This rate is also the
effective conductance obtained from the total electrical cur-
rent Y, I, flowing between nodes C and § maintained at
unit potential difference. Although invalid when compared
to Eq. (2.8) in Eq. (2.1), expression (2.9) illustrates quite
effectively (a) that the partial rate a, of a reaction which
proceeds via the series sequence € —fand f— . of transi-
tions is given by the conductance

CoC
=—<7S  (210)
Cq + st
due to 1esistances R, and R, connected in series and (b)

Cr=R;'=[Rg+Rys]™!

‘that the overall rate a, of the reaction which proceeds via the

parallel sequence involving each fis given by the conduc-
tance

C=R"'=5 R7'=3C
=R'=3R7'=3 G (2.11)

of the effective network with resistances R,( f=1,2,...N)
connected in parallel. The resistance, R, = R, of the € -
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J direct connection is included in Eq. (2.11). Expressions
(2.9) provide illustrations of the theorem due to Bates.! The
approximate QSS rate a,( — E) as a function of & block
energy — Euobtamedbymsernngl-:q (2.8) in Eq. (2.3b).
Theﬁrstmundutatungen by the probability (2.8)
inserted in the power expression (2.1).

(B) Coupled nearest-neighbor (CNN) limit: When re-
sistors R, . _, are only included in block &, the throughput
current [/ is given by

N ~1
I=|Roy + Z,R.,,,_.] .

where junctions in block % are again denoted by # = 0. As
the highest excited bound level N~ o0, R o vanishes, and
the voltage drop between junctions C and f'is then

(2.12)

P/-I Rn.u—

[ Seanflge]

am
which, when inserted in the power equation (2.1) yields the
second rate under investigation. A simplified rate given by
the effective conductance (or electrical current) in Eg.
(2.12)is

@V Ny =R .glc“ ] '

which again illustrates the reaction-in-series principle of
Bates.’ The approximation (2.14) has been previously ob-
tained for (e-A*) + e recombination.’ In contrast to Eq.
(2.9), the result (2.14) cannot be obtained from the energy-
space current (2.3a) since connections between C and the
various 2 are ignored.

Note that the key approximations CNN, Eq. (2.13),
and UIL, Eq. (2.8), satisfy the correct boundary conditions

PYE, =0)=0,
P;'(El = —5)=1
for the probability P7.

. RESULTS

As a test of the above approximations the case of termo-
lecular ion—ion recombination (1.1) is adopted since the as-
sociation (exact) rate a; has been well studied (cf. Ref. 3)
over full variation of the mass parameter

- MM,

M‘(MA +M. +u')
pertinent to A *~M collisions and over the following model
(A*-M) interactions: symmetrical resonance charge trans-
fer (CX), polarization sttraction (POL), and hard-sphere
repulsion (HS). Themasses of A*, B~ and Mare M ,, M,
and M,

The approximate probbilities labeled UIL and CNN
are calculated from the limit (2.8) for uncoupled-intermedi-
ate levels and the limit (2.13) for coupled-nearest-neighbor,
respectively. They are compered in Fig. 2(a) with the exact
quasi-steady-state (QSS) solution of Eq. (2.2). The results,
which pertain to termolecular recombination of equal mass

(2.13)

(2.14)

(2.1%)

Qa.n
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species (a = }) for A*-M collisions under polarization at-
traction (POL), are quite representative of other cases.
Closer agreement of CNN with the exact results indicates
that association tends to proceed via a sequence of small
energy-changing transitions down the ladder of intermedi-
ate levels n, as cxpected, rather than via the indirect
(€ —+n—7) larger energy-changing transitions of UIL,
which involves each intermediate level n presumed uncou-
pled from one another. Moreover, both approximations ap-
pear robust with respect both to the number N ( = 36 and
72) of intermediate levels n adopted in block # and to the
consequent decrease in spacing between the levels. The N
pivots and spacings are selected by the highly accurate meth-
od prescribed in Ref. 6.

Since both approximations CNN and UIL are seen to
satisfy the correct constraints (2.15), the overall agreement
in Fig. 2(a) may however mesk certain deficiencies. A more
sensitive quantity of greater significance to recombination is
the gradient (dP,/dE, ), since, in the limit of small energy
transfers, the energy-space current (2.3b) across & block
level — E reduces* to the diffusional current

1.0~r—r
- {a)
o8}~
-~ 08
£ -
- L
r4 L
04
u—
%
“uvw'vIvTrrrrIrf\\vfﬁf.
(L] / \ J
! .
]
A
J
)
° ’L.bf’:LLlALLAlnlAAJ-‘
(] 1 2 3 4 [ ]
A (= -2/%T)
FIG. 2. (a) Stabilization (voltage drops) as a function of bind-

probebilities
ingenergy ( — £/kT): EXACT [Eq. (2.2)]; CNN {Eq. (2.13)]; and UIL
(Eq. (2.8)] with 72 pivots (upper curve) and 36 pivots (lower curve). (b)
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s
Ji(~EBY= D“’[dp ] (3.2)
where the second-order energy-change moment is
DY (E,) —-—J‘ - E))C, dE,. 3.3)

The gradients shown in Fig. 2(b) are therefore expected to
provide more reliable indicators of the extent of expected
agreement between the corresponding rates.

This sensitivity is indeed confirmed in Figs. 3(a) and
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FIG. 3. Energy-space currents (2.3b), normalized to exact QSS rate a,
(Eq. (2.3b) with (2.2) ] per unit N , N5 across bound energies ( — E /kT):
for model A-M intersctions POL, HS, and CX. (a) UIL, with Eg. (2.8);
(b) CNN, with Eq. (2.13); (c) ratio of approximate to exact derivatives,
Eq. (3.4).

3(b) which illustrate the quite different shapes for the varia-
tions with E of — j( — E), the downward energy-space cur-
rent (2.3b), obtained from both approximations. The cur-
rents (2.3b) are normalized to the exact QSS rate calculated
from the numerical solution of Eq. (2.2) in Eq. (2.3b). Al-
though & is then by definition, constant with respect to E
variation, the E variation of the rate (2.3b) with the approxi-
mate probabilities (2.8) and (2.13) indicates the severe
breakdown of QSS, due to the differences displayed in Figs.
2(a) and 2(b). The following points may now be noted.

First, assigning the rate either at the dissociation limit
E = 0 (the € - interface) or at the lower association limit
— S (the &~ interface) represents a highly inaccurate
procedure for the case of non-QSS probabilities, as previous-
ly noted* for the diffusional results. Choosing the rate at
~2kT below the dissociation limit yields the exact QSS rate
for both approximations, a coincidence mainly due to the
agreement in Fig. 2(b) of the derivatives (dP}/dE,) at
E, ~ — 2kT.

Second, the different shape of Fig. 3(a) from that in Fig.
3(b) can be explained with the aid of Fig. 2(b). From Eq.
(3.2), the ratio of the downward energy-space current to the
exact rate is

dPs] [dpS]
—jw = , 34
7 Ey/ag= [a Ty e G4

where 4 and E label approximate and exact quantities, re-
spectively. AsA = — E,/kT increases to 2, Fig. 3(c) shows
that the ratio (3.4) increases to unity for both CNN and
UIL. With further increase of 4, the CNN ratio continues to
increase while the UIL ratio increases until A approaches
~3.5 and then falls below unity past A ~7. The different
shapes in Figs. 3(a) and 3(b) are a direct reflection of the
variation for each approximation of the ratio (3.4) and con-
firms the physical importance and significance of the gradi-
ents (dP’/dE,).

In spite of its attractive illustrative features, the UIL
energy current (2.9) yields rates which are much smaller
than a; by factors ranging from ~ 10 to ~ 10* as the mass
parameter a of Eq. (3.1) varies from (1/3) for equal masses
to 10%*, The simplified CNN result (2.14) varies from a
factor of 3 higher for a = 10~2, t¢ a factor of 10 smaller at
a = 1/3,toafactorof 17 higher at ¢ = 10°, the limit for e-ion
recombination in a gas.

As previously noted, the power expression (2.1), rather
than Eq. (2.3), must be used when approximate (non-QSS)
probabilities as Eq. (2.8) and (2.13) are adopted. Since the
QSS probabilities provided? a minimum aj to Eq. (2.1), all
other approximate rates must be higher than ag. This is
indeed confirmed by Figs. 4(a) and 4(b), which also show
that the CNN rates are much closer to az than the UIL
rates, as expected from the closer gradients in Fig. 2(b). The
maximum deviation occurs at a = 1/3 where the CNN rates
are only ~25% higher than the exact QSS rates a. All of
the rates are normalized to the Thomson rate &, as defined
in the previous reports.**

In addition to the exact QSS treatment, there are now
three accurate methods available for termolecular rates: (a)
the previous variational procedure? which provides, in fact,
an alternative route to the QSS rates; (b) the previous diffu-
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FIG. 4. Normalized partial rates (3 , /M .4 ) (@/a ;) for termolecular re-
combination A* + B~ + M—AB + M resulting from (A “-M) collisions
as a function of mass parameter g for various model interactions (CX and
O: symmetrical resonance charge transfer; HS and J: hard-sphere; POL
and A: polarization attraction). (a) UIL, Eq. (2.1) with (2.8); (b) CNN,
Eq. (2.1) with Eq. (2.13); (¢) diffusion method, Eq. (2.1) with Eq. (3.6).

sional method* D; and (¢) the present CNN method. Meth-
ods CNN and D are in effect similar in spirit in that CNN
also includes upward and downward transitions, and also
emphasizes the role of small energy changes between neigh-
boring levels. The diffusion method, however, does not im-
pose, as does CNN, an immediate cutoff to transitions which

involve larger energy changes. The CNN probability (2.13)
relies only on evaluation of the collision kemel C,, _, via
the relation

P —Pn+l+Cn+ln zcn+ln] (35)

which is simpler to implement than the diffusion method,*
for which

K,
PHED =PIE) + U D‘Z'w)”fmmw)]
(3.6)

which requires highly accurate? evaluation of the energy-
change moment D'?(E) given by Eq. (3.3).

Figure 4(c) shows the rates of the diffusion method ob-
tained from calculations of D (¥ which are more accurate
than those previously determined in Ref. 4. Comparison
between Figs. 4(b) and 4(¢) indicates that comparable rates
are achieved by the diffusion and CNN methods. The more
sophisticated diffusion method, however, is, in principle,
more accurate in the limits of small and large mass param-
eters g where the collision dynamics is weak so that the rates
are then more sensitive to the stabilization probabilities P>
near the dissociation limit. The diffusion method is also
more accurate for intermediate a ~ 1/3 since the larger ener-
gy transfers tend to be more influential and are included. In
spite of these shortcomings, the CNN method yields rates,
just slightly less good than the diffusion treatment.

IV. SUMMARY AND CONCLUSION

With the aid of an electrical diagram (Fig. 1) two ex-
treme limits of collisional coupling are investigated in order
to elucidate the role of various classes of transitions. A given
level n is directly coupled only to its neighbor in CNN while,
in UIL, each n is assumed coupled only to the fully dissociat-
ed and fully associated states of the reactant € and product
S channels, respectively. The CNN approximation fur-
nishes closer stabilization probabilities £ and association
»ates a, thereby indicating that recombination tends to pro-
ceed more down an energy ladder of coupled levels than by
larger energy jumps € —n— % involving each intermediate
level n. As in the case for all approximate P?, the power
equation (2.1) furnishes’ the required rate ( whlch is always
higher than the exact QSS rate), rather than j( — E,) the
energy-space current (2.3b) which holds’ only for quasi-
steady-state probabilities (2.2). The E, variation of the ener-
gy-space currents j( — E,) deduced from non-QSS probabi-
lities P} is mainly determined by the derivatives (dP/dE,),
as in Eq. (3.4). When assessing via comparison with the
exact QSS rate the effectiveness of the underlying physical
mechanism in each approximate model (CNN, UIL, or dif-
fusion) it is important to use the power expression (2.1).
Otherwise, use of Eq. (2.9b), (2.14), or even of the energy-
space currents (2.3b) as in Figs. 3(a) and 3(b) can lead to
incorrect conclusions regarding the efficacy of the basic
physical assumption.

In conclusion, the nearest-neighbor limit CNN appears
to be a satisfactory approximation for termolecular ion—ion
recombination over the full range of mass parameter and
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1. SCOPE

The aim here is to survey the mechanisms basic to various types of
recombination prdaesses and provide some recent results. Most assume
significance in astrophysics (interstellar medium, stellar and planetary
atmospheres) and some in laboratory (Tokamak) fusion plasmas and in various
types of lasers. They span a wide range in physical conditions e.g., the

® in temperature T (%K) and 1 SN 1020

ranges 10 < T < 10 in particle density
N (cm'3). Recombination includes here not only electron~ion and ion-ion
processes but also ion-atom (molecule) association. Most of the processes
below may be characterized by the mechanism responsible for stabilization of

h

an intermediate resonant collision complex. Typical two-body rates k(cm3 s
for simple atomic and digtomic systems are indicated in parenthesis beside
each process.

For Termolecular Association (TA)

-28 1

] - -
A* + B+ MS(AB") +MoaB 4 M, (10728.10732) N omds (1)

» »
in a gas M of density N, stabilization of AB occurs via AB - M collisions at

9 N 3-1, while Rodiative Association (RA),

a quenching frequency bq £ 10°

+* g

L ] - - -
a* + B 2 (aB*) -+ 4B « ho , (1072-10""T) emds”! (2)

occurs via photon emission (vibrational and electronic) at a radiative rate v,

~ (\03-106) o depending on the type (vibrational or electronic) of
stabilizing transition.

For Dissociative Recombination (DR),

6 3 -1

. » . - -7 -
e+ AB" 2AB > A +B, (10 -10') cm’s (3)

»
stabilization of AB ocours by quantal predissociation onto repulsive covalent

excited molecular states at a dissociative frequency vy ~ 10‘5 s-‘.




<

Emission of radiation provides the required stabilization in Dielectronic

Recombinattion (DIR)

e+ AZ*(1) 2 (%K) - el ,,, - A% (gme) e, 100" s )

which occurs at (resonant) electron energies much higher than the lower thres-

hold energies for which the direct (non-resonant) Radiative Recombination (RR)

e+ 02°(1) » 2%V (ine) e o, (1072 @3 57T (5)

is more important. In contrast to the above formation of intermediate long

lived scattering resonances in (1)-(4), Termolecular Ion-Ion Recombination

(TR)

-24_10725) § cnds”! (6)

A* « B  + M AB+ M, (10
of simple systems proceeds by non-resonant scattering since the Coulomb
attraction cannot accomodate quasi-bound levels. The rates are fast since the
third body M effectively utilizes the many (A*-B”) Coulombic superthermal
encounters, which occur at large ion-ion separations R ¢ 3 70 f at room
temperature. Elastic A*-M and B™-M collisions are very efficient in removing
most of the energy gained by A* and B” from the Coulomb field so that the
highly excited bound levels of AB so formed are then destroyed by multistep
collisional cascades to stable levels. In parallel to the resonant scattering
in (1), TA cén also proceed via non-resonant (A*-M) collisions which change

the energy and angular-momentum of (A*-B) relative motion.




Termolecular Electron-Ion Recombination

A" + M~ A(n) + M, (10‘26-10'29) N cmds” (7)

e+
also proceeds via collisions with the gas M, but at a much smaller rate, since
elastic electron-atom M collisions cause only a small fraction (~2m/M) of
energy to be transferred to M. Rates become larger for molecular M which
absorb a much larger fraction of energy via rotational and vibrational exci-
tation, and for molecular ions when dissociative recombination involving bound
electrons can provide substantial enhancement.

As is well known, Mutual Neutralization (MN)

3 -

A"+ B A +B , (1077-1078) e & (8)
proceeds by direct coupling of the diabatic ionic potential energy curve with
the covalent curves, which however involve much smaller ion-ion separations
R ~ (10-50) ] to yield rates an order of magnitude smaller than for (6). The
fact that the Coulombic interaction between the ions is strong at large
separations where the (Landau-Zener) probability for curve crossing is weak
ensures the dominance of termolecular process (6) over bimolecular process
(8), even at modest pressures. Since collisions with M can form bound (A*-B")
states which in turn promote more efficient curve crossing, MN can be
consideravly enhanced by an ambient gas. It does not occur parallel to TR (6)
30 that the effective rate for neutralization is then not simply the sum (k.rR
+ k"u) of the individual rates.

In an electron-ion plasma of inéermedlate density n, ~ 101’ cm'3,

recombination

e+ A +e+4(n) + e+ ho (9)




— e e e - - - B
= -
.
A

proceeds by collisions into high n-levels, which become de-excited by e-A(n)
collisions and radiative emission. State-to-states rates for DIR (4),

RR (5), DR (3), and NSR (7) would all be relevant. Collisional-radiative

recombination (CRR) then yields the familiar set of quasi-equilibrium (input
= output) Master Equations to be solved for the individual excited state
populations Nn in terms of the concentration of free electrons, ions and
recombined atoms in the lowest stabilized states.

1.1 CURRENT STATUS OF RECOMBINATION

The present state of recombination is that theory (with reliable results)
for most of the above processes involving simple atomic or diatomic systems is
reaching maturity and is approaching a well defined Hi-Tech State. In par-
ticular the recent theoretical developments[1'3] of DIR indicate that DIR

cross sections may be calculated to within the same degree of accuracy (~10%)

as electron-ion inelastic collisions. Termolecular ion-ion recombination[u-él

of simple ion systems in a gas has been solved as a universal function of mass
species, and gas density and temperature. Results for simple systems of
general mass are available at low density. Dissociative recombination[al of
simple diatomic systems is in principle well known but lack of relevant
molecular potential energy curves and branching ratios to final products
prohibit rigorous quantal calculation. Ion-neutral reactions and termolecular

electron-ion recombination for complex systems remain by comparision in a more

(9,10]

exploratory condition, although substantial progress has recently

occurred.

{8,11-13]

Reliable experiments exist for DR, TA and MN which proceed with

measurable rates (1077-10"9 em3s™'). Technical breakthroughs have recently

R[1u’15] and RA[16] which proceed at much slower

permitted measurements on DI
rates (10" '0-10"19) cn3s'1. respectively. The influence of electric fields in

the experiments is important, particularly for DIR and to a lesser extent for




DR. Theories of recombination in external fields are currently under
development.

Although TR (6) 13 now well understood theoretically and proceeds at the
largest rate of any recombination processes involving simple systems, reliable
experimental measurement, apart from some historical data,[17] is as yet not
forthcoming although some activity has recently emerged.[18] There are at
present no measurements from a given laboratory which span the full range of
gas pressures studied theoretically and which monitor the identity of ions as
the pressure changes. The task is difficult in that the ions may well be
clustered to high orders.

1.2 GENERIC KINETIC AND RESONANT-SCATTERING TREATMENT

Identify the interacting species in (1)-(9) as 4, B and M with concentra-
tions n,, Ng and N, respectively. The two stage sequence common to TA(1),
RA(2), DIR(3) and DR(5) is the formation of a long-lived unstable collision
complex AB’, or scattering resonance, followed by an irreversible stabiliza-
tion mechanism, whether radiative as in RA and DIR, collisional as in TA or
dissociative as in DR. The complex with energy degenerate to and lying within
the continuum of dissociated A(i) + B(J) states is formed when the excess
energy and angular momenta of internal and relative motion of A and B become
redistributed among the internal degrees of freedom of AB'. Following large
perturbations in (A-B) close encounters, a quasi-equilibrium of these excited
states of AB. is established. Thus processes RA(1), TA(2), DR(3) and DIR(H)

above may be conveniently analyzed in terms of the macroscopic two stage

sequence
]
5 . 3
A+Be 2B + products (10)
Yd

wpich involves the stabilization at frequency vg of quasi-_ound resonant

» » -
scattering states of AB formed at rate k (ca3 1) before AB‘ can




redissociate (or autoionize) back to the initial or any other dissociated

# [ ]
channel at frequency vy- For a quasi-steady-state density Y of the AB ,
3.-~1

the overall process then proceeds at a rate (cm’s™ ')
1]
“ny 2 ] ar i (1)
k = Mag’s © [vd+Evs *'s

where Ps is the probability of routing to a particular pair of stabilized
products 3. A negative témperature T dependence is anticipated for k since vy
increases with T. As the density N of the gas M is raised, (11) for

collisional association TA predicts an initial linear variation of k with N

»
(when vy » vy ~ ks N) increasing towards a saturation value k (when vy »
”d) times the branching ratio [us/zus] for that particular pair of products.
s
The reaction volume (cm3)

# ]
K = nyp/nng = k /vy (12)

is pivotal in determining the T-dependence of the overall rate

K bl e x(r)[vsvd] (13)
k'+zusx(T) f”s’”d

#*
Note that K is not an equilibrium constant in the usual sense since AB
is distributed only among those states satisfying energy and angular momentum

conservation above the dissociation limit. It is given in usual notation by

n3  qaB")  “aB

K(T) =
(2, guemy 32 AMA(B) wyup

(1)




where q is the internal partition function, or the number of quantum states

available at temperature T ~2 exp(-Ei/kT), and where w is the electronic
- i

statistical weight, associated with each reactant A and B and with the
activated complex AB' of reduced mass MAB' While q(A) and q(B) are generally
known, q(AB‘) must include only those rotational-vibrational-electronic states
of AB. accessible at energies above the dissociation threshold of AB. It also
includes states which satisfy conservation of total angular momentum produced
from the orbital angular momentum for (A-B) relative motion and the combined
internal angular momentum of the individual reactants.

The key quantities which characterize the T-dependence and rate limiting
step of each of RA, TA, DIR and DR are therefore K(T) and the stabilization
frequency vg. For polyatomic species, not only is calculation of K difficult
but vy is uncertain to the extent that the type of transition (vibration or
electronic) may not be established. This lack can involve at least two orders
of magnitude difference in the rates.[Io]

For cases RA, DIR, DR and TA, a microscopic state-to-state generaliza-
tion, (phase-space or multichannel) of the basic premise underlying (11) can
be written down in terms of all the relevant electronic, vibrational and
rotational quantum numbers for the internal degrees of freedom i and j of A(i)
and B(J), for the translational energy and angular momentum of A-B relative
motion and for the total conserved angular momentum and energy. The simpli-
fied expression (11) however not only serves as a guide to experimentalists in
elucidating the role, and extracting the rate peculiar to various stabiliza-
tion mechanisms but is also capable of providing order-of-magnitude rates and
the associated dependence on temperature T fairly reliably.

The intimate conmnection of (11), standard in chemical kinetics, with
scattering theory is instructive. When the redissociation or autoionization

channels in (1)-(5) are considered as a series of non-overlapping resonances




and when the non resonant background scattering is neglected, then Breit-
Wigner resonance scattering theory with explicit inclusion of all multi-
channels, consistent';ith energy and angular momentum conservation, can be
applied. In order to preserve a simpie notation to isolate the key connec-
tion, and to illustrate the essential technique, let AB‘ exhibit only relative
motion scattering resonances (quasi bound states) at (A-B) relative energies E
z E:. The cross section for the resonant reaction of & and B with internal
energies EA,B is

»
w(AB ) ra rs

2
v rh
a(E;EA,EB) *E LZHAB] w(A)w(B)

5 (15)

‘ 3 1
e LEEp® %)

where the total energy of the system is ET = EA + EB + E, where the energy
widths for stabilization and re-dissociation (autoionization) are related to

the corresponding frequencies by
Ty =h vy (16)

where I' is the total width (2 Fd+2 Fs) for all dissociative (d) and stabiliza-
d s

tion channels (s). The electronic statistical weight of species X is w(X).
The rate of recombination for a Maxwellian distribution of relative energies E

at temperature T is

kT 11/2 .
] I e o(e) exp(-e)de ; e = E/KT (n

™

AB

where "AB is the reduced mass of (A-B). Since the Dirac delta function &6(x)




_ »
is 1’1 lim h(x2+h2) 1, the rate (17) for sharp resonances I' << (ET'Er) then

h-o
reduces to _
h3 . “aB 5 P4a"s . AT ()
k(T,E,,E.) = [ exp-(E /kT)] exp(E +E_ ) /kT (1
'""A'"B (2"MABkT)3/2 wywp ‘ (zvsﬂ»d) r A B

On assuming that the frequencies are independent of the resonance

* * »
positions Er, then 3 exp(-Er/kT) is then simply the partition function q(AB )
r

»
arising from all the resonance states of AB . On averaging over all internal
states i and J of A and B and with the use of detailed balance, (12), (11) and

(14) are then recovered since 2 exp(-EA/kT) exp(-EB/kT) is the product
i,
q(A)q(B) of the reactant partition functions. This connection provides a

basis for (11) or (14) more quantitative than the earlier steady-state kinetic
rate argument. The extension to include all multichannels directly is
straight- forward, but the case of overlapping resonances existing in various
polyatomic systems requires attention, and may well under approximation
provide the rate (13) in current use.

Because of the long range Coulombic attraction in the entrance channels
the remaining related processes (TR, TER), as indicated earlier, do not
proceed via the resonating tight complex but rather by energy-changing
collisions between M and (A*-B") pairs. The collisions are effective for
those pairs with separation R ¢ RT = e2/kT ~ 370 R at room temperature, which
in a sense can be regarded to form an extremely large loose non-resonating
complex with reaction volume K = ; 4 R%. At low gas density N, (13) predicts

4 Y 3
kTR~‘§wRTus=§—RT(VAB>Na (19)




where o is the cross section for free-bound energy-changing (A*-B7)-M
collisions, and emphasizes the characteristic linear N and the T~2/2_1°3
dependéncies. AC high N, however, the rate does not converge to the
saturation value k’ predicted by (13). The rate of approach of A" and B” to

L and which becomes

Ry is limited by the transport rate, which decreases as N~
comparable to the reaction rate (19) within RT at about ~1 atm. For TA(1)
however the transport rate always remains much higher than the rate limiting
step of reaction so that saturation to the thermal rate k‘ i3 eventually

obtained.
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2. RADIATIVE AND TERMOLECULAR ASSOCIATION

2.1 SIMPLE SYSTENS: The underlying physics of Radiatiuve Recombination

of simple system as

c*(zpw) « H3S) » cHYa'm - et (x'3) + ho (20)

[19]

becomes transparent in a semiclassical treatment, where the cross section

is

1+

o(E) = 2w I Pr(E,p)p dp (21)
[o]

at relative energy E. The probability of radiative emission during a

collision at impact parameter p is

PP(E,p) = J G(t)A(t)dt = §‘G(R)A(R)dR/VR (22)
- R

where the radial speed at relative separation R is Va with turning point RT’
and where G(R) is the probab‘lity that cH" during the collision is in state i

(AIH), which radiates at a local rate

h*e3 [M(R) |2 AE3(R) (23)

wj &

A(R) =

to the stabilized state £(X'3). The molecular states, with wavefunctions ¥; ,
?

and energy separation AE(R) = Vf(R) - Vi(R). are connected via the dipole

11
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-1
matrix element M(R) = <¥.(r,R)ler|¥ (r,R)>. Rates kg, = 1.3 10 T emd s

obtained[19] for (20) over the temperature range 20 ¢ T (°k) < 1000 do not,
however, satisfaélorily explain the discrepancy between the observed and
theoretically deduced abundances of the radical CH' in diffuse interstellar
clouds. A quantal treatment can in addition acknowledge the discrete
vibrational levels of the intermediate electronic state 1(A1H) and can include
quasi-bound resonances formed within the centrifugal barrier. These effects

[20]

enhance the semiclassical rates for (20) by ~ 25%, mainly at lower T.

Also state i may support predissociating levels between the fine structure
state C* (291/2) and C* (2P3/2) of the reactants. No full treatment has as
yet been performed.

Termolecular Association

A + B+ M->aAB  + M (24)

for formation of simple diatomics as He2+, Ne2+, etc. can be considered[21] as
proceeding via a multistep series of collisions between (A*-B) pairs and M
which change both the energy E and angular momentum L of relative (He'-He)
motion to such an extent that bound stabilized levels are formed. At lower
energies E there is an additional contribution from quasi-bound resonances[22]
formed at positive E within the centrifugal barrier.

A multichannel generalization of (13) to simple (structureless) atomic

systems yields the termolecular association rate[23]

L2
L max k. K:N
> il »
kTA = JdE J dL [;m] ki (25)
o o il

where subscripted-i rates refer to specific energy E and angular momentum L of

A-B relative motion, where Lmax is the maximum L of the complex at fixed E,

12




and where

R
s *
- kI Nn, = r—'ni(a) v, (R)dR (26)
Ry

is the overall frequency for stabilization of all the (A-B)i-pairs with
internal separation R between the innermost turning point Ri_ of radial motion
and the radial boundary RO(E,L) of the complex. The pair-distribution per
unit interval dR dE dLi2 is ni(ﬁ), and ”i(R) = qu is the frequency of (A-B);
- M quenching collisions with rate kq at fixed (R, Ei’ Liz). At low gas
densities N this distribution can be taken as its equilibrium value 31, since
vy in (268) is already linear in N. When the quenching coefficient kq is
constant, and equal to some fraction g of the constant Langevin limiting rate

»
for spiralling (AB -M) collisions
172
k = Zve(aM/Ms) (27)

»
where ay is the polarizability of M and Ms is the reduced masa of the (AB -M)

system, it then follows that

o RE) 22
. o2
n" = Jazj w [ Fma
0 o] Q
, . R, (E)
= — (k1)73/2 J exp(-E/KT)dE j [E-v(R))'/? gn (28)
\G‘ o} [0}

- For polarization attraction V(R) ~ (&Bez/za“) between A" and B of

polarizability ap and orbiting radius R (E) = (aBe2/2E)1/“, (28) yields

13
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(29)

cw
Sl e

where RL is (aBe2/2kT)1/u and (8/Vr) arises from both the focusing effect and

the enhancement of R0 at small E. The association rate at low N is then

8

3 -1

. =2 -31 -
kpg = 0 (BT, Nk IN ~ (1077 - 107" )N cm” s (30)

which exhibits the temperature dependence B(T) T‘3/u. The efficiency B ~ 1,

but for He' - He charge transfer collisions the quenching rate kq ~ <UpOan’

involves an additional (k’l‘)”2 factor from v,, and a factor (lcT).1 from

AM
g5/

focusing effects so that k at low temperature.

A
2.2 COMPLEX SYSTEMS: Here, rates are much higher due to increase in the

physical size and in the number of internal modes of the intermediate complex.

For triatomic ionic systems as

(cnz*) + CHY + (31a)

which initiates carbon phase chemistry in diffuse and dense interstellar

[24]

clouds, and for polyatomic complexes as in either

+

- + 8
CH3 +Hy € (CH5 )

> CHS* + ho (31b)

which is a precursorlg] to the formation of methane (CH“), or in

)]
r

(cu3*-H20)' - cu3*oH20 + hp (31c)

14
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which can be photodissociated!>'! to produce methanol (CHyOH) fn the
interstellar medium, the "kinetic chemical" approach is as yet the only viable
method. The eollisiéa duration is much longer than that for simple systems as
(20) and there are simply too many degrees of freedom in the intermediate
complex to consider in a full quantal state-to-state fashion. Moreover the
complex offers a near continuum of closely spaced vibrational (and electronic)
energies, overlapping resonances and many intramolecular processes so that a
state-to-state method could not be considered as providing the most efficient
or realistic description.

In order to isolate radiative association (RA) from termolecular

0 w3 and temperatures

association (TA) extremely low neutral densities ¢ 101
T (10%k-30%) are required. The mechanisms often proceed in parallel so that,

in the coupled sequence,
H)

k v,
A+B+(M)§AB*-’ AB + hv (32)
d
k'
v
=3 » 4
« AB - AB + M {(33)
Yd

» r »
K., = 1 ur={ }k (34)

and termolecular association at the rate

k M
* q »
kTA = 04y uq = [“d”’s] k . (35)

15
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The frequency of stabilization of the complex, against both natural and

collisional disruption at frequency Dy is

v zuv_+k N , (36)

the sum of the radiative decay frequency Vps and the frequency qu for

collisional quenching. At low densities N(Hz,He) ~ (103-1010) cm'3 in

interstellar clouds, vy = v, << v,, SO that the overall association is

radiative controlled proceeding at rate
A= Kpa = Ko, (31)

where the reaction volume is given by (14). At intermediate densities

0 3

(101 -1016) cm °, vy still remains << oy and association proceeds at rate

- - i
ky = Kpp *+ kpp = K (v, » kq N) (38)

which increases with gas density N, until it saturates to the limiting rate
kTA = k'or collisional formation of the original complex. The rate (38) is
determined by the character of the interaction between the transition channels
within the complex and differences in temperature dependence are mainly con-
trolled by the T-variation of the reaction volume K(T). Radiative stabiliza-

tion rates v, for complex systems are also uncertain, but are expected to be

3 -1 5 4nb

b, ~ 10° 3” ' for vibrational transitions and v, ~ 10°-10 5-1 for electronic

transitions. The larger electronic rates v, permits‘asaociation in inter-

stellar clouds to proceed faster than origtnally supposed.[gl

L] -
Typical values for the relevant rates are the Langevin limit k ~ 10 9

1 7T -1 3 .05 s 9

3 - - 1
s,y ~ 10 s |, v, ~ 10

! and the Langevin limit v_~ 10"°N s~ .

-10 q
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Radiative rates kp, ~ (107 13.10""") cm® s~ and termolecular rates kpp ~

! are then expected for complex systems at low gas densities N.

12

1072 § cn3 s

Termolecular asséziation therefore begin to compete with RA for N ~ 10 cm'3

while at higher N > 10’2 cm™3, TA becomes dominant.

Few experiments exist on RA, mainly due to the smallness of the rate

~ 10-13 cm3 3'1 and difficulty in achieving low temperatures (T ~ 10%K) and

densities (N ¢ 10° cm'3) needed for isolation of RA. The TRAP technique of

[16) 1

represents a spirited effort while at higher N ~ 101
(251]

Dunn and associates
- 1013 cm'3, the ICR (ion-cyclotron resonance)-experiment measures the RA
and TA combination (21). By contrast, many TA experimental studies at yet
higher N > 1015 cm'3 exist for atmospheric species -~ the SIFT (selected ion
flow tube) teehnique[12] being the major contributor. For TA, reasonable
(order-of-magnitude) agreement exist with theory, particularly in the tempera-
ture variation. For RA, the few measurements of (24) and (25) do not agree
with available theory and do not furnish information on the type (vibrational
or electronic) of radiative stabilization. Interesting discrepancies between
experiment and theory based on (42) and (43) for polyatomic species are
discussed by Bates and Herbst.[1°]
3. DISSOCIATIVE RECOMBINATION

3.1 DIRECT PROCESS

In the direct two stage mechanism (Fig. 1a)

»
k v

g
e s AB*(v,) (AB.)r — A48, kg ~ (3002 107 ead st (39)

a

’ ]
the electron of energy e excites an electron of the ion-core AB and is then
resonantly captured via a Franck-Condon (FC) vertical transition onto the
]
repulsive state r of the double excited molecule (AB ). Competition between

reverse autoionization at nonlocal frequency vy and predissociation at

17
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nonlocal frequency vg continue until the electronically excited neutral
fragments accelerate past the stabilization point Rs' Beyond Rs the
increasing energy of relative separation has reduced the total electronic
energy to such an extent that autoionization is essentially precluded and the
neutralization is then rendered permanent. The kinetic energy of the electron
(in the field of AB*) is effectively transferred here to motion of the nuclei
not by direct collision but via a rearrangement in (39) of the whole
electronic cloud. DR is a "reactive" process in the sense that the reactants
and products involve different collision partners.

The autoionization character of AB. for R'< Rs makes resonant capture

originally possible, and the covalent repulsive character for R > Rs makes

neutralization finally permanent. For reasonable capture over a range of e,
the autoionization width Fa ~ h vy must not be too small, while large
stabilization probabilities Ps demand small widths. The requirement of

resonant capture without any energy transfer between electronic and nuclear

motion is that the vertical difference in the potential-energy curves (PE+ and
PE.) for XY* and XY. equals e (Fig. ta). For thermal-energy electrons this
requirement is best fulfilled when PE' crosses PE* on the right side of its
minimum (ef. Fig. 1a), as for most cases of doubly excited electronic states
with more than four electrons. This energy-matching can consequently occur
over the full range of e.

Large capture rates depend therefore on good electron-electron communica-
tion (correlation) and on good vibrational overlap between the AB* bound and
AB'-continuum nuclear wavefunctions, an overlap which is sersitive to the
initial vibrational level vy of the ion and to the crossing of PE' and PE*,
When the only crossings in Fig. 1a are provided by the upper repulsive PE.
curves, then the capture probability remains small for v1=0 ions and thermal

electrons, and becomes large only when these curves are accessed by more

18
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energetic electrons e > 0.5 eV, which imply however smaller Coulomb focused
scattering cross sections o ~ e'1. This is the situation with H2+ (v1=0) and

»
He,®. Conversely, the overlap of aB* (vi=2) in Fig. 1(a) with the lower PE

2
is poor, relative to the much larger overlap with the upper curves. Note e is
measured from R on PE'.

In keeping with (11), the recombination cross section for simple systems

may be factored as

UDR(e) = ac(e) Ps(e) (40)

where the cross section for capture at Rc 13[26]

¢ 2, %0 142 »
o (e) = 7 V(R |"|v (R )|"(dR/d(PE Mg (41)

Here V(R) is the electronically-averaged interaction coupling the initial and
intermediate molecular systems, *; is the vibrational wavefunction for AB+(v)
and C is (213/m h) [w(AB) /w(AB*)]. The stabilization probability is given as

in (11) by us/(va+2 ”s)‘ By analogy with dissociative attachment, it may also

s
be approximated by,[26]
t
s
Ps(e) = exp[- I [Fa(R)/h]dt] (42)
t
c

where TA(R) is a local autoionization width (so that ra = h v is the prob-
ability of electron éjection per unit time) and where the integration is over
the interval from the time tc at formation of AB' at Rc to the time ts when
stabilization at Rs is rendered permanent. This interval depends on the total

]
energy and slope of PE . Although the local ra(n) in (42) is not strictly
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appropriate to recombination at thermal e, (43) remains useful as an estimate
of the influence of autoionization., Thus Ps is reduced by an increase in
number of open bound vibrational channels over which autoionization proceeds
when electrons are emitted not only at energy €, T € but also at €, # € when
the energy imbalance is absorbed by vibrational motion. It is enhanced not
only by a reduction in the time interval, but also by an increase in the
density of intermediate complexes and product channels, as with ion-clusters.
The e"-dependence of a, results in recombination rates (11) which decreases

-0.5

as Te For typical diatomic molecular ions as Ne2+ or NO*, dissociation

15 -1 O1u 8-1

occurs at frequencies v_ ~ 10 ™ s ', large compared with v, ~ 1 for

a
autoionization, so that Ps is close to unity. At thermal energies Coulomb

focusing dominates the capture so that o, "~ e'1 2 10'1u cmz. Rates kDR (Ne2+)A

3 3'1 are then quite typical, As one proceeds through

~ 21077 (300/1°5 cm
an ion sequence (Nez+ - Xez*), the natural increase in o, is due both to the
stronger interactions and larger vibrational amplitudes and Ps remains sub-
stantial. Owing to the increasing steepness of PE’, it generally increases.
Continued increase in a, however implies a corresponding increase in auto-
ionization width so that Ps will eventually decrease, until it becomes limited
to (vs/ua) as for the case of polyatomic systems.

3.2 INDIRECT PROCESS

In the following indirect additional mechanism for DR,[26]
» » ®
e+ AB*(v) Z (AB (n,v)] ¢ (AB) +A +B (43)
the electron is captured into attractive (a) vibrationally excited (v')
*
Rydberg states (n) of AB which converge to the initial electronic state of

aB* (Fig. 1b) and which are then coupled by configuration interaction to the

'dissoclative channels. The first stage involves energy transfer from the

20




electron directly to vibrational excitation of the nuclei. In contrast to the
broad e-range enjoyed by the direct process (31), only selected energies e’
close to the Rydé;rg level (Fig. 1b) contribute to the indirect process which
is therefore characterized by a series of narrow resonances (enhancements or
dips) in the overall recombination cross section at the low electron energies
e < 1 eV favored by this process.

The formal multichannel quantum theory of DR via the direct and indirect

(8] For full quantal calculations the following

mechanisms can be constructed.
information is required as input: (a) identification and calculation of the
relevant PE* and PE‘ curves for the capture cross section including those for
the vibrationally excited Rydberg state, (b) the quantum coupling between the
autoionization and dissociation channels for the widths Fa and rs and (c) the
branching ratios to all possible products of dissociation. Since the coupling
(b) appears as a resonance in the asymptotic phase of the electronic
wavefunction the widths may be obtained either from direct electron-ion
scattering calculations or from extrapolation of the properties of the Rydberg
and valence bound states across the ionization threshold. The main
theoretical problems are associated with the uncertainty of the role of the
vibrationally excited Rydberg states and with the branching ratios which in
turn involves solution of a set of coupled equations incorporating the
interactions between the various products of dissociation. The "reactive" DR
process combines therefore both electron-ion, ion-ion and neutral-neutral
scattering technologies. Because of the sensitivity (as indicated above) of
kDR on the slopes, shapes and relative positions of PE* and PE. and the lack
of accurate PE curves for most systems, rigcrous calcuiation has been confined

(27,281 ,,

mainly 2’ and to some diatomic ions (N2+, 02’ and NO*) of

atmospheric significance.[8]
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DR for even the simplest diatomic system e*Hz*, although not quite
typical, is instructive. The sole candidate in the direct p?ocess for e-H2+
(XZE;,V) recombination at low energies € < 1 eV is the lowest doubly excited
123 (2pou)2 state of H, which crosses the 128+ ion state in the vicinity of
the v = 2 level, and which dissociates into ionic fragments H' + H™. Because
of the propensity rule Av' = 1 for vibrational autoionization in (43), the
recombination can be actively hindered by the higher vibrational levels v' of
Rydberg states (1sagnen) with intermediate n < 8, and the contribution from
these levels is weak. However, the sequence, coupling the direct and indirect

processes,

+ w 1] +
e + Hy” (v=0) » Hy, - H, (n,v>2) > Hy »H, +e,

[27,28]

does interfere destructively with the direct process. The resulting

4 [29]

resonant dips in the cross section have just been observe Rates for e +

3 571 unere (k,,7) have just been

Hz*(v) can be given as k (300/1)" 1079 cn
caleulated!2®) as (0.8,0.3), (6,0.5), (0.45,0.66), (0.66,0.32) and (1.1,0.77)

for v = 0, 1, 2, 3 and Y4, respectively.
[28)

t.[8]

The DR-rate for CH' (v=0) at 120°K was also calculated

10'7 cm3 s'1 in good agreement with a merged beam experimen

to be ~ 1.12

Even though measured DR rates for many ions of planetary and astro-
chemical interest can be used with reasonable confidence, severe disagreement

exists for the simplest triatomic H3+ important to the Jovian atmosphere and

to interstellar chemistry. The rate is expected to be small since the 2A

1

1
A, state of H3* at 1 eV

1
which vary from 2 1078 cnd s7!

»
repulsive part of the PE curve of H3 intersects the

above the v=0 level. Recent measurements[3°]

8 com> 3'1 at 1000 K for v=o and 1 ions are orders of

(31] 3

at 100%K to 1 10~

magnitude higher than the revised upper-limit rate'>') of 2 107 cm3 s~ at
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300 K. The merged beam experiment[30] detects the neutral products while the

(31]

Flowing Afterglow Langmuir Probe (FALP) experiment measures the loss of

H3+ ions, and thf; may well be the source of the discrepancy.

Polyatomic ions and clusters offer many more additional degrees of
freedom for capture of the electron, in both mechanisms. With increasing ion
complexity, the multiplicity of readily excited internal modes of small energy
separation makes the near resonant energy condition of the indirect process
easier to attain by presenting a near continuum of closely spaced vibrational

energies and trapping becomes more efficient over a broad range of e'. This

is confirmed by the large rates Kpp ™ 2 t0_6 (300/1)0’u for dimer complexes

+

N2 'NZ' 02*002 and CO*-CO, important in atmospheric chemistry. That polar

6

clusters H30+0(H20)n and NHu+~NH with rates k,, ~ 3 10 cm3 5_1 appear

3 DR
fairly insensitive to T, has as yet not been satisfactorily explained.

As systems become more complex (Nez' - Xez’), the resulting increase in
the capture cross sections o, tends to be offset by a corresponding decrease
in the stabilization probability Ps from near unity unt{l stabilizat.on

becomes the rate limiting step. The rate from (11} is then

Kpa = K(T) by (uy4)
where the reaction volume has now the interesting fbrm[9]
h w(AB’) 2 dR
K(T) = (2,,,@)3/2 o) [J. I\pv(R)I [a(p[-;.)] exp(-E/kT)dE] (45)

which contains an effective Franck-Condon factor which essentially selects
only that portion of the full internal partition function of AB* that
contributes to the capture by the vertical transition at R = Rc. Polyatomic
systems relevant to interstellar cloud chemistry have recently been discussed

by Bates.[9]
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4, DIELECTRONIC AND RADIATIVE RECOMBINATION

. 6
Dielectronic recombination (DIR) at high temperatures (~107K)

#

Kk vr ‘
e(ce) + A77(i) 3 (= " ()-el , Afj"’*u) + bo (43)
a

is a resonant capture process into doubly excited Rydberg levels subsequently
stabilized by radiative emission at frequency v adjacent to, and usually on
the lower frequency side of, the resonance transition

A% (k) » a%*(3) + o (U7)

R
of the recombining ion of charge Ze. These satellite lines are observed in
solar and in high temperature fusion plasmas and provide valuable diagnosis of
electron temperature, electron density and the various stages of ionization.
The frequency shift which originates from core perturbation by the né-electron
is small for high Rydberg né-levels but would be quite large for low-lying n
levels. Since the product ion may be subsequently re-ionized by i=teraction
with its environment the stabilization mechanism is not quite as secure as
that for dissociative recombination.

Although stabilization of the high Rydberg ion mainly occurs at high
electron temperatures Te' by the inner-core transition (47) with the captured
electron as a spectator, stabilization can also occur by a radiative transi-
tion n& » n'#' of the outer electron. This mechanism tends to be effective
mainly at much lower temperatures (¢ 10u°K) characteristic of planetary
nebulae. It i{s also effective for ions with low lying metastable levels, as

in
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e+ 0" (*s) » 0" 12p3(%D)nre'] + 0 (°D,ne) + hw (48)

The rate for diéiectronic recombination (DIR) for an initial state i of

the ion is, in the isolated resonance approximation (IRA), given by (16) as

vy (d%i)v (d-f)

»
(T;1) = ] %, E E 8y [ TRETTNEY ] exp(-E/kT)  (49)

k
DIR [(2wka)3/2

where 8y and g4 (=2(28+1)) are the electronic statistical weights for state i
of the recombining ion and for intermediate resonant state d (=nf) at energy
E: above state i. Each resonant state d may autoionize back (via an Auger
transition) to state i with frequency vy (d»i) or radiate with frequency v,
(d-f) to bound levels f. The total radiative and Auger rates from d to all
states are vr(d) and ”a(d)’ respectively. The total DIR rate is obtained by

sumning over all possible initial states i, intermediate states d and final

bound statec f. Note that the factor h3/(21rka)3/2 in (49) is (MrIA/kT)3/2
a3 = w1212 1078 17372 ool

DIR within the past three years has been subjected to intense theoreti-
cal[3] and experimental[15] study. The existing calculations are based on

either the Coulombic model, the distorted wave method and the relativistic
(311

configuration interaction method. For example, Chen in a series of
excellent papers has used the multiconfiguration Dirac-Fock model to evaluate
the detailed transition energies and Auger and radiative rates. The calcula-

tions not only include the Coulomb r"1 interaction but also the Breit inter-

12
action and other quantum-electrodynamic corrections. A considerable amount of
theoretical data has now been accumulated[3] for many different isoelectronic
sequences - for cases when the number N of electrons in the initial ion is

N = 1-5, 8-12, 18 and 19).
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The autoionization frequency decreases with (n,#) as v, ~n 3 exp(-at”)

owing to a decrease in communication between the core and Rydberg electrons,

and is independeﬁz of Z. The radiative frequency is b, ~ a3zp for core decay

(p = 4 or 1 with or without a change in core princtpal quantum number) and v,
3 3

~ a” Z/n” for outer electron decay. For small n << 50 and low ¢, v, <« v, S0

that (49) is radiatively limited. At nebular temperatures T ~ 10“ K the

exponential in (49) restricts the summation to levels within ~ 0.15 eV of the

ionization limit and v. is determined by outer electron decay. Since v < v,

for large n, convergence can be obtained. Rates kDIR ~ (12=-7) 1012 cm3 3'1

3+, 0u+ recombination at T ~ 10uK which exceed the direct radiative

(3]

for C2*, N
contribution are typical.

At high T (~ 107 ©

K) ~ 1 keV characteristic of the solar corona, the full
Rydberg series of autoionization levels must be included and core relaxation
is the main radiative decay. For n >> 50, v, << v, so that (49) is limited by
autoionization. While the number of resonances increases as 2n2, only the low
¢ fraction are effective. Electric fields can however mix high 2-states with

low f-states so that DIR could be significantly enhanced. Typical rates[32]

-1 3 _-1 5+

are ~ 3 10 em® s~ at 1 keV for F-like Se2 - an X-ray laser candidate.

The separation AE (a.u.) between resonances of Rydberg series is ~ 22/n3
which can become less than the radiative width Fr = h bL- The detailed
resonance structure is then smeared out by interaction with the radiation
field and IRA breaks down. Bell and Seaton2 have solved this problem by
quantum defect theory which because of its close connection with Rydberg
series is ideally suited to DIR. Thus DIR-cross sections can in principle be
calculated to tﬁe same accuracy as electron-ion'scattering cross sections (to
within 10%). .

For ions with low Z, Coster-Kronig (CK) channels, such as 1s2pne -

1s2s + e for He-like ions, become energetically accessible for large n.
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This effect of autoionization to excited states of the recombining ion has
generally been neglected in the fluorescence yield », {d-f) [ur(d) + ua(d)]'1
in all calculations of (49) until only recently. For example, the onset of
the above CK transition for Be3’ ion is at n’ = 3, and n' increases with 2
(e.g., n. =z g for F7*5. Inclusion of CK transitions reduce[32} the peak
values of the total DIR-rates for BS%, N* and F7* by 60%, 13% and 4%,
respectively. This trend is correct since the relative contributions to DIR
from high n-state (important at low Z) decrease with n, while the onset of
CK-transitions occurs at higher n as Z increases. The CK-effects are not,
of course, included in the largely historical semi-empirical formulae of
Burgess{33} (for core decay An = 0) and of Merts et al.[3u} (for &n = 1),
These formulae, although used quite generally by astrophysicists, over-
estimate[32] small Z-rates by a factor of 3 and underestimate large Z-rates
by as much as a factor of 2.

In addition to CK-transitions for low Z, some remaining problems appear
to be (a) effects of external fields on DIR, (b) three-body density effectg on
k

DIR
excited ion-core provide two Rydberg series of autoionization channels which

and (¢) fine structure effects. For (c¢), fine structure states of the

cap mutually interfere (as in the decay 3p3/2 (ne) » 3p1/2(e18) + 331/2(e28)
in Mg+). A problem which appears to be solved is the coupling between
resonant DIR and the following non-resonant radiative recombination (RR)
which, while negligible for ions with low Z, becomes appreciable at high Z.
The subsequent chain of atomic processes in astrophysics was initiated by

the basic (e-H") Radiative Recombination (RR) process

e+ a2%1) » A% V(e 4 o (50)

into level (n2). Since RR is a direct inverse of photoionization with cross

section a?e(hu), the RR rate by detailed balance is
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, KT+ 1/2 KT + Bne e "2,
k; (T) = -——] E;—J f——}exp(lne/kT) I ET] o; (hv)exp(-hv/kT)d(hv/kT)

m c2 231 I

- né
(51)

where 8; and &,p are the electronic statistical weights of the initial ion and

the recombined ion in level n# with ionization potential In . Various

e
analytical forms for o, can be adopted e.g., when (hv)3 aI(h”) equals its
value Ig a:e(In) at threshold then the rate is

I g
30041/2 ¢ n\2 0l
13 f__] r—] [—] ;:e('l') emd s (52)

né - -
kg (T) = 1.5 10 [T lIH %8,

where, in terms of the exponential integral E,, the averaged cross section is

1’
Ege(r) - age [x, exp x JE(x ), x = I/kT (53)

which reduces at low temperatures kT << In to

E?”(T) - age [1-(kT/1 ) + 2(kT/In)2 - 6(kT/In)3 . (54)

The quantal cross section for photoionization of hydrogenic ions of

charge Z by radiation of scaled energy u(:hu/ln) is
w-3, ho - In
a?e(hu) = az(w) Gne(u) - (55)

w-e-7/2, hy > In

The departure from the (Kramer) semiclassical (high n and 2 averaged)

photoionization cross sectlon[35]
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2°a ny3
o) = = —2-] [EE] waoz = 7.9 n2% 3 () (56)
3

¢ , -

where a is the fine structure constant (ez/hc) is given by the bound-free

Gaunt factor G _,. The rate (14) is then

I S gne

K2(z,T) - ‘é;]”z =) _ E,_E] (a3ra %) [E] FT) (5D

3 T-1/2

Departures of (57) from the above standard (22 n- ) low temperature

rule is provided by the function

1 o G (v
» e T né
FolT) = ;; exp(1/T ) ]
1

)
exp(-w/T')dw (58)

%
which decreases monotonically from Gne(1) as the scaled temperature T
»
(:kT/In) increases. For interstellar clouds kT<<In and Fne(T <<1) tends to
Gne(l) the threshold Gaunt factor. Note that (57) also provides the universal

scaling law

KBlz,m) = udfr,1/22) (59)
Recombination rates are greatest into low n levels and the w172
variation of Gne in (58) preferentially populates states with low & ~ 2-5,

(36] for n < 20

Highly accurate analytical fits for Gne(w) have been obtained
so that (57) is expressed in terms of known functions of fit parameters. This
procedure (which does not violate the 52 sum rule) has been extended[36] to

non-hydrogen systems of neon-like Fe XVII, where a?e(w) is a monotonica’ly
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P

= ——

decreasing function of w.

n-1
2y (28+1)Fne(T.), is close[36]

Variation of the 2-averaged values, n
< 2z0

in both shape and magnitude with the corresponding semi-classical function
S(T.) i.e., (58) with'Gne(u) = 1. Hence the 2-averaged recombination rate is
] a2 B2 2,
kp(Z,T) = 1.1932 10 [—f—] [n—] Fn('r ) cm® s (60)
where Fn can be calculated directly from (58) or be approximated as Gn(1)
S(T‘). A computer program based on a three term expansion of Gn is also

[(37]

available.

Tables exist[38] for the effective rate

© n-1

né _ n'e'

kF.‘ (T) = E E kR Cn'e',ne (61)
n'=n ¢'=0

of populating levels né of hydrogen by radiative recombination rate all levels
n' > n followed with probability Ci £ for subsequent radiative cascade (i-f)
L4

via all possible intermediate paths. Tables[38] also exist for the total rate

® n-1

N _ -2 né

K = 2 n 2 o (62)
n=N =0

of recombination of levels N and above of hydrogen. They are useful in
deducing time scales radiative of recombination and rates from (59) for
complex ions.

When effective at higher temperatures, dielectronic recombination

proceeds in general faster than RR. Since k, ~ 22, RR can however become
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competitive for highly charged ions. A unified treatment of DIR and RR has

recently been presented.[39] The mutual interference of the corresponding

amplitudes and cghtinuum-continuum coupling is expected to be most important
for individual transitions involving low-lying auto-ionization levels and is
probably negligible for DIR arising from highly excited levels. If the
photoionization cross section o?e(hu) already includes the effects of
autoionizing resonances, no further correction for DIR to RR may be necessary.
5. MUTUAL NEUTRALIZATION (MN)

Until fairly recently (1984), lack of agreement of various curve-crossing

and Landau-Zener type theories with experiment for such a simple system as
+ - *
H +H - H(n) +H (63)

remained embarassing, and agreement between the two main experiments remained
very good. Then a 1983—theory[u0] which included couplings (neglected in

previous theories) to the n = 3 lesel still did not agree with measurement,

until new experiments[u7’u2] were performed in 1984 and 1985. The process

(63) is now apparently well understood, but careful quantum mechanics and

experiment is required.
In dense interstellar clouds, MN of complex systems can be important and

can produce qualitative changea[aul in the chemistry sequence. For example,

when polycyclic aromatic hydrocarbons (PAH) exist in high abundance, the
negative charge is carried not by electrons but by PAH™ so that MN, as in

ct + PAH » C + PAH, replaces dissociative recombination (DR) so that the

C-abundance is enhanced.!2"!
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6. TERMOLECULAR RECOMBINATION

6.1 ION-ION:

The theory 5} termolecular ion-ion recombination and

a

A" + BT+ Me B+ M (64)
K

of positive and negative atomic ions of concentrations NA B(t) at time t in a
?

[u43]

gas M is also well established, and is also suitable as a case study. The

effective two-body association rate a(N,T) cm3 3-1 and the dissociation

frequency k(N,T) :=s'1 are functions of gas density and are given by[u3]

S .S L
i (Pi-Pf) cif dsf = k ng (65)

®
a NN = J P dE
-D -D
where P?, which measures the departure from equilibrium, is the stochastic
probability that a pair (A+-B') with energy-distribution n, over internal
relative energy F.‘1 of the pair is connected via a multistep series of energy
(state)~changing collisions to a stabilized sink ¥ of low lying fully
associated pairs of concentration n, (cf. Fig. 2). The sink ¥ extends over
the energy range -3 > Ei 2 -D where -D is the lowest energy level and where -S
is that bound level below which P? is unity. The one-way equilibrium rate Cif
for E1+Ef collisional transitions per unit interval dEidEf is Ei"if’ and the

distribution n, satisfies the input-output collisional Master Equation[u3]
dni ©
S .S
at ° [1c(t) - 1s(t)] I (Pi'Pf) C1f dEr (66)
-D

where the departures from their steady equilibrium (tilda) values of the total
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) time-dependent concentrations of fully dissociated pairs (in block ¢, 0 < E1 <

» where P? ~ 0) and of fully associated pairs (in block ¥ where P? ~ 1) are

~

7,(8) = Ny (EING(6) /NNy 5 7 g(E) = n (t)/ng (67)

respectively. For quasi-steady-state (QSS) of the intermediate block & (0 >

Ey

reduces to

> -S) of highly excited levels at time t, (66) vanishes so that (64)

© -E
S~ [‘ [‘ S .S

AA' f’ (68)
E -D
for arbitrary energy -E in block &.
6.1.1 VARIATIONAL PRINCIPLE: It has been recently proposed[uu] that PS are

i
so distributed that the rate (65) is a minimum. This distribution leads

exactly to the QSS-distribution given by (66) set to zero. Thus (65) provides
a variational expression for the QSS condition, so that Pf may be determined
(Fig. 3) variationally or from the direct solution of the integral equation
(66). The Variational[uu] and QSS[u3] rates obtained are of course identical.
6.1.2 DIFFUSION METHOD. By performing a Fokker-Planck conversion of the
integral equation (66), the resulting (but approximate) differential equation
is identical with a diffusion equation in energy space which can be solved
analytically for Pf (Fig. 3). Insertion in (65) yields a proposed diffusional
method[usl which is highly accurate (Fig. 4).

6.1.3 BOTTLENECK LIMIT. On assuming that pairs above and below a bound level

-E are in equilibrium with the fully dissociated and associated (blocks C and

1 for E, ¢ -E) then either

S, respectively (i.e., P? = 0 for E1 > -E and P? i

(64) or (68) yield,
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a(-E) NA B I dE1 I cif dEf (69)

the one-way equilibrium collisional rate across -E, which is then an upper
limit to the exact rate. Variation of a with -E yields the least-upper-limit
at the bottleneck energy £ (see refs. [23) and [43)).

Other approximations such as Coupled Nearest-Neighbor (CNN) limit and
Uncoupled Intermediate &-block Levels (UIL), based on analogy of (65) and (66)

(46] have also elucidated the modes

with electrical networks recently proposed,
of energy reduction.
6.1.4 GAS DENSITY

As the gas density N is raised non-equilibrium effects in internal
separation R of A* and B must be considered. The appropriate input-output
collisional-transport Master Equation satisfied by the distribution ni(g) of

(A*-B”) pairs per unit interval dR dE, has been shown to satisfy the

continuity equation[u”
d ani 1 J
3t ni(R t) = at— 2 3R [R J (R)]
- J [n,(R)V, ((R) - n (R)v,, (R)IdE, (70)
V(R)

where jg(R) (= JI - j;) is the net outward transport current of pairs
expanding at R, where ”if(R) is the frequency per unit interval dR dEi dEf
for E1 - Er collisional transitions for ions at fixed separation R and where
V(R) is the energy of interaction between A and B. Integration of (70) over
all accessible R yields the standard Master Equation (66).

The question of reproducing the cumulative effects of multistep

3




energy-changing collisions by an accumulative strong collision within a loose

collision complex of radial extent RT can now be examined.[u3] The rate of
- A

recombination within a sphere of radius RT and the overall probablility Pi(RT)

of association within RT are related by low gas density by

— &

alBy) N ¥ [uua,?;}i'(n.r)1p‘i‘(ar)dzi , (71)

B~ |
[o]

which is expressed via (70) in terms of the scapilization probabilities P;
by 431

[+ RT [e)
a(R,) NN =st J o | c . 05ae (72)
Rp) NpNg i ] Cir Fp 9Ep
) ) V(R)

A strong-collision (or classical) treatment refers to the assignment P? =1 in
(72).

Fig. 5 illustrates the ratio of the effective strong-collision rate, to
ag, the exact rate a (RTam). Agreement can be obtained by assigning

(de-facto) Ry ~ 0.5 Re. The underlying reason becomes apparent from Fig. 6.

AE

The exact probability P1 that (Ei=0) dissociated pairs ultimately associate

dominates the probability P?D for ultimate redissociation (after bound levels

AE
i

probability P?T (from (72) with P? = 1) are essentially equal. Pairs with

are formed) for smaller RT << Re = ea/kT, so that P, and the strong-collision

larger RT » Re are however mainly redissociated (Fig. 6). The strong
collision rate at Ry ~ 0.45 is then twice the rate a(RT) of (72). The
remaining coutribution from R > RT to the exact rate provides agreement with

the strong collision rates.[“3]

The concept of the above loose reaction complex is useful in showing[23]
with the aid of (70) that the variation of recombination with gas density
yields the familiar result

2N ATR
a(N) = —~——vo : (713)
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where aTR(N), the known rate for transport of pairs by diffusional-drift to
within separation RT, decreases as N_1. The reaction rate apN by collision
with M within R'g Ry increases initially linearly with N and saturates at
higher N (~ 1 atm). The magnitude and density variation of (73), with

accompanying theoretical procedures, agree with Monte-Carlo Computer

[4,6]

Simulations for the recombination of rare gas-halide systems. No

benchmark measurements are available, but the two historical measurements at

(171

low and high N respectively in general agree with (73).

6.2 Electron-Ion: The trapping radius concept is also useful to obtain

classical rates (i.e., (72) with P? = 1) not only for termolecular

recombination (64) but also for electron and neutral stabilized electron-ion

o
collisional recombination (9) and (7) respectively. The frequency "1(R) = f
V(R)

uif(R)dEf fer formation of bound pairs is v12(R)a N, where Vio is the speed of
- ]

A*+B” relative motion and o is the cross section for AB -M deactivating

coilisions. On assuming constant cross section a, for such collisions, (72)

reduces (with P? = 1) exactly to

o R
a N g = [ fdsi JO n;(R) v ,(R)dR](g N) (74)
o o

[awr]va[u 3 3 Re
= =7 R ] [t +s=— 10 N (75)
t"MAB 3 o 2R, " o

where Re is ez/kT. A classical version of the semiquantal bottleneck treat-
ment (& 6.1.3 above) yields, a priori, the trapping radius to be R, = 0.41 Rg-

The rates a of termolecular recombination (64), and of e-e collisional

recombination (e + At . e) at electron temperature Te and electron density ng
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are therefore,

kT 120 25
age(T) = 0.32 ?i:,;] 5 ™ R3] (o) ~ 2.3 10 (300/7)%°3 N(em® 7y (76)
and
KT> 1/2 14
a (T) = 0'3255'] {3 31 (— R 2)ne ~ 2.7 1072 (300/m)* 5 n (cm s“han

respectively. In (77), a, for electron-electron collisions is taken as the

1 3
Coulomb cross section (3 uRez) for energy changes > 3 kT. These expressions

provide the correct order of magnitude and temperature dependence, and, in
general, agree with experiment. In particular (76) agrees with the expression

of Mansbach and Keck[ua]

derived from more elaborate anglysis. At higher Te
and lower ne, the highly excited levels collisjonally formed within kT of the
ionization limit become increasingly stabilized by radiative transitions.

The resulting rate for collisional-radiative recompination can then be

approximated 38[49]

- -4, -1 -0. - 2. . -
agy = [3.8 109're Sne+1.55 10 °Te°63+6109T3298ne°371cm3s'

(78)

where the first term is (77), the second term is the radiative correction and
the third term arises from collisional-radiative coupling. This expression

agrees with the experimental data{ag}

to within 10% for a Lyman optically
thick plasma with n, and T, in the range 107 <ng, (em™3) < 10'3 and
2.50 < T, (°K) < 4OOOK.

For termolecular (e + A" + B) collisional recombination only a small

fraction & = Zm/HB can be transferred in e-B elastic collisions so that the

37
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Ei-integration in (74) must be so resuv.!~ted to give

ekm1z g =, ¥r B
aeB(Te) = "-T] lhrRo (oo N) Jo r dr J (1+ ; ) ee de (79)
o o

with R =r Re and e = Ei/kT. Hence

8kT
( ey1/2 6

a g (T,) = tmb LF_} RzRo (o N) ~ (1072 /M. (AM) ) (300/1)2°3 N (80)

which agrees exactly with the diffusion result of Pitaevskii[so] and which is

(51] 28

linear in the trapping radius R . This result (~10~ om s“) is in

general agreement with experimental data for (e + He* + Cs) but is much

smaller than that (~ 10“26) for (e + He® + He), which proceeds far more

[52] »

effectively via formation of an intermediate complex He2 which then

dissociates into neutral fragments.

The rate for (e + A* + B) is greatly increased[51] for a molecular gas B
where energy reductions are effected mainly by rotational and vibrational
transitions. Allowance for the discreteness of (e-A‘) Rydberg levels reduces

[53]

and produces a sharper decrease with temperature. When A’ is a

“eM
molecular ion XY’ a dissociative recombination channel opens. Here the
(e-xY") pairs formed in highly excited Rydberg molecular levels XY* by
cocllision with M, in addition to being collisionally and radiatively quenched
to stable bound states of AB, may predissociate along repulsive curves x.+Y
i.e., by dissociative recombination involving bound eiectrons - the second

half of the indirect mechanism.[u3]

(53]

The contribution from this collisional
dissociative recombination can dominate the contribution from direct

collisional relaxation. That quantal curve-crossing is involved makes it
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similar to the enhancement[6] of mutual neutralization (A*+Bf) by third

bodies. In the limit of high gas density N, the recombination rate L

becomes traﬁaport liéited, as in (73) for ion-ion recombination and decreases
as N". Because of the higher electron mobilities, its onset however occurs

at much higher N. Between the linear low density region and the transport

(54]

limited N~ region only Monte Carlo simulations have been performed. For

(e + A* + M) recombination in a molecular gas the rotational and vibrational

(551 and of Takayanagi and Itlkaua[56] and the

(561

cross sections of Takayanagi

recommended molecular constants are invaluable.
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

]

Figure Captions
Schematic representation of potential energy curves for dissocia-
tive recombination, e + aB* - A‘ + B, (a) via the direct (vertical
transition) mechanism and (b) via the indirect (Rydberg) mechanism.
Schematic Diagram of energy blocks €, ¢ and ¥ pertinent to

recombination at low gas densities.

(43]
(45]

Stabilization probabilities: (E): quasi-steady-state
(V2): two-parameter Variational.[u“] (D): Diffusion.

My

(A" + B + M) partial recombination rates BT—J a(a) normalized to
AB

Thomson's rate aT(a) as a function of mass parameter a = MBHg
/MA(MA+MB+M8) for various (A*-M) or (B™-M) interactions (CX:
symmetrical resonance charge transfer; HS: hard-sphere; POL:
polarization attraction). The full rates are a(a)aT(a) +
a(b)aT(b) where b = (MA/MB)Z a and where Thomson's rate is

(a) = w8 (3 )12 (Ref. 43.)
apla) = 3 LL AB aAHN‘ ef, .
Variation of a(RT), eq. (72) with P? = 1, to exact rate, eq. (72)
with RT -+ @, for ion-ion recombination of equal-mass species
under various (A*-M) interactions (cf. Fig. 4).
Probability for eventual association and re-dissociation of (A*-B7)

AE and PRD: exact association

pairs with zero internal energy. P
and redissociation. PST: strong collision. The probabilities are
normalized to Thomson's low density probability PT = RT (aAM N).

(Ref. 43).
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ELECTRON COLLISION CROSS SECTIONS INVOLVING EXCITED STATES

£. J. Mansky

School of Physics
Georgia Institute of Technology
Atlanta, Georgla 30332-0430 U.S.A.

Knowledge of the integral cross sections for the electron-impact
excitation of atoms initially in a metastable state is of fundamental
importance not only in determining the number densities of atoms in various
excited states, but also in understanding the overall collision dynamics of
energy transfer and excited-state diagnostics in partially ionized gases.
Recently, the study of transitions between metastable states of He has been

revitalized by experimental measurements at Kaiserslautern (Iﬂller-?iedler
et al. 1984) of the differential cross sections, and at Madison (Rall et

al. 1989) of the integral cross sections for the 233 - 331. electronic
excitations in helium. This signals a new era in experiments involving
metastable states in that much more detailed information can now be
obtained by modern measurements than was possible in the pioneering work of
Phelps (1955). This has also marked a resurgence in theoretical activity
in this area as well with recent distorted wave calculations (Mathur et
al., 1987) and optical potential calculations (Vu¥ié et al. 1987). In this
note we will briefly summarize the original multichannel eikonal theory of
Flannery and MoCann (1974a,b,c, 19752,b), together with the correction
needed to account for the influence that distant trajectories have on the
scattering amplitude for states dipole-coupled via an optically-allowed
transition to the initial state (Mansky and Flannery 1989a). In

particular, attention will be focused on the results for the 233 - 331.
transitions in He due to the recent experimental data which has become
available.

The basic expression in the multichannel eikonal theory (MET) for the
complex scattering amplitude for the transition { » n is (Flannery and
McCann 1975a,c)

A+l

£,00) = -8 [@'e) (10,700 - 1 Iy(p,a(00p 80 ()

]

where the integrals I, and 12 are defined,

— .




o ac,(p,2)
11(p,1(8)) z I& xn(p,z) F exp{iv(8)z] {2a)

-

L]

m
Iz(p,v(e)) z sz [Kn(xn-kn) ¢ -

iz vnn]cn(p,z) exp(1+(8)z] (2b)

-@

The other terms in equations (1) and (2) are: q' = kn 3in@; +(9) = «,
(1-cos8); A = o, -m, where ml(mn) is the magnetic quantum number of state

u
2 2
i(n); JA is an ordinary Beasel function of order 4; x_ = k

o o " ‘,? vnn' The

complex amplitude functions Cn(p,z) in equation (2) are solutions of the
following set of coupled first-order partial differential equations,

112 acn(p,z) 1,‘2 N

T e TR G R L z Vi emlil-k)z] (3)
3=

which are solved subject to the asymptotic boundary condition condition,
C,(p,z*-=) = 6 for the N states in the basis set {n=1,2,...,N). For

definitions of the remaining terms in equations (1-3) and a complete
derivation of these equations see the original MET papers of Flannery and
McCann (1974a,b,c, 1975a,b).

The main assumptions made in the derivation of (3) is that the
trajectory for the relative motion of the electron in channel n is
accurately characterized by a straight-line, and that the contribution of
exchange to the inelastic integral cross section for channel n is
negligible. The assumption of a straight-line trajectory for the relative

L]

motion of the projectile electron in ¢~ + A collisions should be reliable
due to the dominant nature of the long range part of the projectile-target
electrostatic interaction in thege collisions. However, in heavy particle
collisions account must be taken of the curvature of the trajectory in
order for accurste inelastis integral cross sections to be obtained. This
has been done within the MET for applications in heavy particle collisions
by McCann and Plannery (1975,1978).

Similarly, in electron-setastable atoms collisions the neglect of
electron exchange effects should not introduce a great deal of error (Vudié
et al. 1987). This is due to the increased size of the target atom when
the incident state is an excited state. Recall that for hydrogen (Bethe
and Salpeter 1977), the meap value of r, the electron-nucleus distance,

scales with n as, <r> = [3n2 - 2(2+1)]/22Z. This increase results in a
concomitant decrease in the electronic charge density p(r) of the target
atom, which results in 5 lowering of the probability of overlap of the
projectile slectron's wavefunction with that of the bound electron, thereby
decreasing the importance of electron exchange when compared to the case of
scattering from ground stats targets (i.e,, target atoms initially in the
ground state).

In actual calculations the coupled PDE's (3) are solved over a finite
2-dimensional grid: 0 < p < p -Z £z¢z The subsequent

max’ “max - £ max
p~integration in (1) is then from p = 0 to p = Typical values of

pmx

v -




Zoax for ground state targets (s 100-120 a,, while for metastable targets
(i.e., target atoms initially in a metastable state) Z gy FANECS from
250-300 a,. The typlcal values of Prax Fange from 11 to 35 a, for ground

state targets, while for metastable targets the corresponding range is from
48 to 207 a,. These ranges on 2z and Pnax refer to 10-channel eikonal

theory results for hydrogen and helium (Mansky and Flannery 1989a,b).

while the above values of Zoax and Prax for ground state targets is

sufficient to insure convergence of the inelastic integral cross section to
the corresponding Born value at high energy, in the case of metastable
targets this is not the case. The contribution that trajectories, with
impact parameters p in the range p { p < », make to the scattering

max =
amplitude for metastable transitions (e.g., 238 - 33L, L 2 5,P,D) is not
negligible at high energies. This is particularly true of metastable
states dipole-coupled to the initial state via an optically-allowed
transition. The correction to the scattering amplitude needed to account
for these distant trajectories is given by (Mansky and Flannery 1989a),

Fmax
Mgy = J'm 3P, (8,7) = 1 Ly(p,1)1p dp + £(31PO1) ()
0 .

= t‘é?m)(e) * f‘(‘glpo“)(e), dipole-coupled transitions (4a)
= f‘r(":m)(e) , all other transitions (tb)
where,
(dipole) A 2y a
foi (8) = (1) ?m (200, ¢ (20K, (20250, (x5)K, (x5)](5)

and ' = -(1)“1, a' = 7(8)-a, a = Zu(en-ei)/ﬁz(klokn), dr'li = V3/lix dnye

with dni denoting the dipole moment for the transition 1L - n, and x, =
q'pw, 1= a'p-.. The eigenenergies of the target atom are denoted €
while Km(x) is a modified Bessel function of order m.

In this note the dipole correction (5) has been applied only to the

238 - 2390 o1 and 238 -+ 33P (A = 0,1) transitions within a 9-channel

basis (238, 23P° »? 338, 331":"21 and 3300'21'!2). The present multi-

1 29
channel eikonal theory results for these transitions are hereafter denoted
DMET. However, to avoid confusion with Flannery and McCann's (1975)
original MET results, the present results for the remaining triplet transi-
tions will also be denoted DMET (with equations (4a) and (4b) in mind this
should cause little confusion).

0,21

In figure 1 the present DMET results for the differential cross sec-
tions for the 233 - 23P and 235 - 33L {L = 5,P,D) transitions at E = 20 eV
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are compared with the esperimental data of Muller-Fledler et al. (1384),
- the original MET results of Flannery and McCann (1975b) and (where avail-
able) the distorted-wave (DW) results of Mathur et al. ( 1987). The present

DMET results for the 238 » 38 and 278 + 3% optically-forbidden transi-
tions are clearly in excellent agreement with the experimental data. In
particular, the agreement of the DMET results with experiment for the
facmer transition ls a direct result of the improved numerical solution of
(3) used in the present results compared to that used in the original MET

results. For the optically allowed 238 > 239 and 233 - 33P transitions,
the present DMET resulcs are seen to be underestimating the experimental

data of n":ner-Fiedler et al. This is also the casa with the original MET
results and the DW results. Interestingly however, all three theoretical

resulty predict the existence of a deep diffractive minimum at about 12° in

the 238 - 33P DCS. No such behavior is seen howsver in the exparimental
data, leading one to question the theorstical results. Wnile the D
results of Mathur et al. (1987) includes electron exchange «ithin the

primary, 235 - 33P, transition {with no couplings to other states}), both
the ariginal MET results and the present DMET results neglect exchange but

include couplings up to the 330 state. These points, taken together with
the DCS experimental data for the naii triplet states (cf. Table 1), seem to
indicate that the major physical mechanism missing from the theoretical
results shown in figure 1 s coupling to the n=¥ triplat states of helium.

At least both dipole (235 - lt3l’) and quadrupole (238 - u3s, 33D) couplings
should be inciuded in a theoretical calculation in light of the relative
magnitudes observed in the Kalssrslautern experiment betwsen the DCS for

the 339 state and the nzd triplet states.

TABLE 1. Experimental Differential Crosa 3ections for c'¢m(233 - n3L)
L]
(nz/str.) (Muller-Fledler et al. 198%4).

8 Pl 33 3 3 43sadpendpandr

10 300 4.9 5 P 10

15 85 1.4 1.9 10 ]

20 - 26 .99 2.1 3 1.8

% - 1.5 .60 18 1.1 .18

30 2.8 ‘38 58 .37 ‘50

35 1.6

o .82

The DMET integral cross sections for the 230 and 33!. {L=8,P,D) states
are compared in figure 2 with the Born results of Flannery et al. (1975),
the original MET results of Flannery and McCann (1975b) and (where
available) the distorted-wave results of Mathur et al. (1987}, Also, for

the 27P and 333 states, the S-state R-matrix results of Fon et al. (1981)
and the Glauber theory results of Khayrallah et al. (1978) are shown,
respectively. The above theoretical results are compsred in figure 2 with

the recent experimental data of Rall et al. (1389) far the 338. 33P ang 330

states. In the case of the 338 and the 330 states the experimental results
are absolute apparent cross sections, so a direct comparison with theory
will require the subtraction of the cascade contribution from the apparent

measurements. Only the 33!’ results of Rall et al. (1989) are direct
measurements. These were determined from the optical croas sections for

e . e e,
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the 23P and 3P and Einstein A coefficients (see Rall et al. (1989) for
details). Clearly, further theoretical work will be required in order to
convert the remaining apparent cross section measurements of Rall et al. to
direct cross sections. Howsver, the measurements of Rall et al. do confirms
the basic trend, seen in both the MET and DMET, of the optically-forbidden

235 - 330 cross section being larger than the optically-allowed 233 - 33P
cross section in the intermediate energy region.
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THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

IN ATOMIC SCATTERING THEORY

E. J. Mansky
School of Physics
Georgia Institute of Technology
Atlanta, GCeorgia 30332

ABSTRACT

The numerical solution of coupled partial and ordinary differ-
ential equations in electron-atom scattering theory are compared.
In particular, a case study is made of the transition H(1s -
28,2p) excited by electrons in the intermediate energy region.
The results of the multichannel eikonal theory (MET) and the
close coupling theory (CC) for this transition are compared and
contrasted with experiment and each other. The prineciple conclu-
sion is that the configuration space and angular momentum repre-
sentations employed by the two theories provides information
about the excitation process which is complementary. Speci-
fically, the contrasting differences between the MET and CC
results at small and large scattering angles for the modulus and
phase angle of the complex scattering amplitudes fni(e) sheds new

light on the computational problems that need to be solved in
order for the A, R and I problem to be resolved.

I. INTRODUCTION

In this lecture the numerical solution of partial differential
equations in electron-atom scattering theory will be discussed and
contrasted with the problem of solving ordinary differential equations in
scattering theory. In particular, the results obtained by the multi-
channel eikonal and close coupling theories for the electron impact Exci-
tation of hydrogen will be examined in detail. In Section II the partial
differential equations of the multichannel eikonal theory are presented
together with the ordinary differential equations of the close coupling
theory. The advantages and limitations inherent in the representations
employed by both theories is also discussed. In addition, the paralleli-




zability of the algorithms used in the numerical solution of the PDE's
and the ODE's irF the two theories is discussed in Section II. Section
111 contains a discussion of the results of the two theories for the
integral and differential cross sections and the complex scattering
amplitudes for the electron impact excitation of hydrogen. The con-
clusions are presented in Section IV together with a list of general

references.

II1. THEORY
Here we are concerned with the scattering of a structureless

projectile B at a distance R from a target atom A with electronic coor-

dinate r. In this case, the time-independent Schrodinger equation is,

¥ ¥, = B (1)

where the Hamiltonian operator 11 is given by,

42 #2 o,
Y, T m "B Em e’ Vag * Vae * Vge (2a)
2 2 2
=:<h—v2 -E—v2 -’-l—vz-rv +V, +V (2b)
ZmT CM 2u AB 2m r AB Ae Be
stH*ji (2¢)

In equation (2a) the first three terms on the right-hand side of the
equation are the kinetic energy operators for the indicated particles,
while in equations (2b,c) the separation into center-of-mass (CM) and
relative motion terms are shown. As is well known, the separability of
the CM and relative motion terms in this case allows one to write the
system wavefunction wl as a product of a plane wave with a wavefunction
*1 for the relative motion of projectile B in the field of force of
target A, The target atom A in the present case is assumed to be
hydrogenic, generalization to other cases is straightforward. The masses



in (2b) are defined as m = me(mA+mB)/mT, u = mAmB/(mA+mB) and m, = my+ Mg

+m .
e

Therefore, Schrodinger's equation (1) now becomes,
- ]
niwi = E *i (3)

To solve (3) one generally expands the wavefunction wi in a sum over

eigenstates Xph of the target A,
b= Y F(R,0) x (R, ,F) ()
A AB’ "n’ AB’
n

where Fn is the (unknown) wavefunction for the relative motion of projec-

tile B a distance ?AB from target A (in channel n). In this lecture we
are primarily concerned with contrasting the numerical solution of PDE's
and ODE's in atomic scattering theory and hence the expansion given by
(4) will be sufficient. However, if one is interested in resolving the
spin structure of the target atom A, or the resonances in the cross
section near threshold, additional terms (antisymmetrization, correla-
tion, etc.) need to be added to (4). These additional terms will
ultimately result in a larger set of coupled equations to be solved, but
will not change in a material way our basic discussion of the numerical
solution of coupled partial and ordinary differential equations in
electron-atom scattering. References to calculations which do include
the above effects are given in Section III.

Substitution of (4) into (3) results in the following set of
coupled ordinary differential equations,

2 2
112 ) h kn ' .
~ 2z VaB Fp * 2u Fr = Van P © 2 vnm(PAB)Fm
m
112
2 - -

- ) 3 (FalXys Vog Xg) * 2 Fygfp (xr Fpp x)1 (5)

m

—— ——




where the prime on the summation sign indicates omission of the term nzm,
and the inner ffroduct (f,g) is defined.

(£,8) = Jr(?) g(F)dr
To convert (5) into a set of PDE's, write Fn(?AB) : An(?AB) exp[iSn(?AB)]

and note that riB z p2 + 22 with p,z,¢ the usual cylindrical coordinates
centered at A. This yields the following set of equations,

2u
- - I 2
An a8 An v 2 vAB An Y An * \VAB An * (kn - EZ Vnn) An} An
2u 2u
SN N D 2
A #2 Yom *n %m 2.52 Bnm ° vAB(Am Am) (6)
m m

- -
with A = exp(i S (7,5)] and Bnm s (x,) Vpg Xp)- After writing the
gradient and Laplacian operators in (6) in terms of cylindrical coordi-
nates, the coupled Hamilton-Jacobi partial differential equations are

solved for the amplitude functions An(?AB). In these equations the

eikonal phase Sn(?AB) is assumed to be known exactly. To obtain an
equation for Sn set the term inside the curly brackets in (6) equal to
zero,

2 - 2 2u -
YaB An(rAB) + (kn -.;3 Von! An(rAB) = 0 7

where the vnm in (6) are the instantaneous electrostatic interaction

->
between the projectile and target i.e., Vnm = Vnm(rAB) = (xn,

IS 2
V(rAB.?)xm). .Defining the local wavenumber xn(?AB) = ko - (2p/h2) v
and writing the Laplacian in (7) in spherical coordinates yields,

L2
LAB 2 ] eisn(l‘AB)

+* ™A ¢ K
2 n

AB

1 4 2 a iSn(PAB)] o

2 or ["AB ar,g ©
rep * B AB




2
»1sg+i;sr’l-(s;‘)z+‘.’§

"
o

(8)

where the primes denote differentiation with respect to CaB and LiB is
the eigenvalue of the relative angular momentum operator ﬂ = (h/i) @

. . 2 2
X sAB' The 'frequency'’ w, 1s defined, w, = (LAB AB) + Ko Here we are

interested in electron-atom collisions where the relative motion of the
electron to a good approximation is a straight line. That is, we assume

that the eikonal phase factor Sn(?AB) is a slowly varying function of

?AB; or, equivalently, that the density of the classical ensemble of

particles varies sufficiently slowly alohg the classical trajectory such

that S§ ~ 0, and the 2 term in (8) can be ignored. In this case, the

AB
real part of (8) is integrated to give,

z 2u 1/2
5(ryg) = S_(p,2) = k2 + J [[k (p,2')] - kn]dz' (9)

hZ nn

In the case of heavy particle collisions the curvature of the trajectory
of the projectile must be included in the eikonal phase. An example of
this type of calculation, for ion-molecule coliisions, is the work of
McCann and Flannery (26,27]. With the choice of (9) for the eikonal
phase the coupled equations (6) are independent of An on the left-hand-
side. In order to further simplify these 2nd-order partial differential

equations for An, we in addition assume that the term viB

AB® The latter condition
insures that the second summation on the RHS of (6) vanishes and is con-

An is small and

that the eigenstates X, are independent of 7

sistent with our omission of electron correlation effects in the wave-
function expansion. These terms become important when there is siénifi-
cant configuration mixing in the target atom.

With the above approximations, the coupled equations (6) reduce
to a set of first-order partial differential equations,




EZ 6Cn(p,z) 32

i~k
" n

L
- mn _i _ '
where An(p,z) z Cn(p,z) e exp{-i J (“n kn)dz }, and 4,

dz

o U kpley) + ¥ IC = E Vo, €, explilk -k )z) (10)
J

iA, z

'}

mi-mn.

-l

These equations are solved subject to the boundary condition Cn(p,-w)

= 8-

The coupled equations (10) are the basis of the multichannel

eikonal theory (MET) of Flannery and McCann {11-16]. The three principal

advantages of the semiclassical equations (10) are:

(i)

(i1)

(iii)

The equations are first-order in 2, hence the numerical tech-
niques used for ordinary differential equations can be used
to solve (10). This also means that no matrix diagonaliza-
tion needs to be done in the numerical solution of (10), as
is the case with 2nd-order ODE's.

The second variable p (the projectile's impact parameter)
appears in (10) only as a parameter. This indicates that the
coupled PDE's (10) will be readily parallelizable. While no
calculations have yet been performed with (10) solved on a
parallelizable machine, when this is done, a great deal of
time should be saved. This is important since the numerical
solution of (10) is the principle bottleneck in the MET
calculations.

The memory and time required to solve (10) is a linear funec-
tion of the number of eigenstates Xn used in the basis set
(4). This is in contrast to the case of 2nd-order ODE's
where the time required for the matrix diagonalization is a
cubic function of the number of elements in the matrix to be
diagonalized. This in turn is a result of the direct methods
used for the matrix diagonalization, and hence represents a
major hurdle to the use of large basis sets in the solution
of 2nd-order ODE's. The ultimate reason behind the diffi-
culty in using large basis sets in solving 2nd-order ODE's by
matrix techniques lies in the use of an angular momentum
representation for the wavefunctions Fn rather than a

. .




coordinate (i.e., configuration space) representation.

The main disadvantage of solving the list-order partial differential
equations (10) is the  fact that they must be solved over a 2-dimensional
grid rather than a one-dimensional grid as is necessary in the solution
of 2nd-order ODE's. A consequence of this is that the memory require-
ments are an order of magnitude larger for the former calculation as
compared to the latter.

The close coupling 2nd-order ODE's which arise from using an

angular momentum representation for Fn(?AB) in (4), are,

[d ’—+k2]F(r )
(2 = .2 i] i AB
drAB aB AB
-2 2 Viy(rag) Fy(ryg) + J Wy j(ragr®’) Fy(e)ar?
J o
(1)
D) Mg Pne(Tap)®pey (an
n#

where ei is the orbital angular momentum quantum number of the projectile
electron in state i, and the Ag:) are Lagrange multipliers chosen such
that the target orbitals Pn? are orthogonal to the Fi. The matrix

elements VIJ are the same as those defined previously, while the W, ,6 are

the electrostatic matrix elements arising from inclusion of electrég
exchange (i.e., antisymmetrization) terms and correlation terms in the
wavefunction expansion (4). The close coupling equations (11) are well
known in the literature, hence their derivation need not be repeated
here. However, attention is drawn to the following papers and reviews
for those interested in further details [2,5-7,29].

Technically, the close coupling equations (11) are Fredholm
ordinary integro-differential equations which, using the technique of
Marriott (25], can be cast in the form of a larger set of purely ordinary
" differential equations. Then, after discretization of the Laplacian in

(11), the problem is converted into one of matrix diagonalization.




The advantage of using the close coupling equations (11) is that
very accurate fhelastic cross gections can be obtained close to threshold
- especially the resonance structure between the inelastic threshold and
the threshold for ionization. However, as the energy crosses the ioni-
zat .on threshold (where the number of open channels becomes infinite), or
in the case of transitions between excited states, the close coupling
equations (11) become increasingly difficult to solve via matrix
techniques due to the large number of basis states and partial waves ei
required for convergence. This problem can partly be alleviated through
the use of pseudo-states. Another way around the bott neck of basis set
size in the solution of (11) is through the use of multi-tasking on the
CRAY-XMP. Important recent work in this regard is that of Sawey et al.
(30]. Clearly further work on the numerical solution of (11), both by
matrix diagonalization techniques and by solving the equivalent partial
differential equations, is needed.

In this lecture we are interested in contrasting the numerical
solutions of the coupled PDE's (10) with the ODE's (11). Hence we will
only discuss the techniques used to solve numerically the PDE's (10), the
techniques used to solve the close coupling equations (11) having been
thoroughly described in {2,5,7]. In particular we will end Section II
with a brief review of extrapolation methods used to solve l1st-order
ordinary differential equations. A more complete discussion of the
numerical solution of (10) including Runge-Kutta and predictor-corrector
methods will be given in a forthcoming paper [22].

Extrapolation methods for ODE's
Consider the 1st-order ODE, dy(t)/dt = F(t,y(t)). When this is

integrated for sufficiently smail step sizes h, the solution of y(t+h)
can be written as a power series in h,

m
y(teh) = y(t) + E Ti(t)hi + a(n™") (13)
i=1

The goal of extrapolation methods is to eliminate the power series in h
in (13) above by integrating the differential equation for a sequence of




step sizes ho'h1""'hm’ and then extrapolating the results to h - 0.

That is, the power series I r.l(t)h1 is approximated by functions Rm(t,hi)

o

which have m+! unknowns. These unknowns are determined by the condition
Rm(t,hJ
approximated by Rm(t,O).

) = y(t+hj), j = 0,1,...,m. Hence the solution of the ODE y(t) is

The two principle extrapolation methods are by polynomials and by

rational functions. In polynomial extrapolation the function Rm(t,hi)

Réi)(h) is an mth degree polynomial in h and is computed recursively by,

(i+1) (1)

R - R
R(l) . R(i"") . m“ m-1
m m (hi/h1+m)'1

In rational function extrapolation the R;i) =z Pm(h)/Qm(h) where Pm(h) and

Q,(h) are polynomials in h of degree u and v, respectively. The Rii)(h)
are computed in this case recursively via
i i
RE1) =0, R(() ) = y(t+hi)
R(1-»1) _ R(i_)
g(1) | glisD) n-] m-1 .
mo C w1 Y +1) y B2

(i (1)
Rm-1 = B
-1
Tl oiel ]
Rm-1 - Rm-2

2

The MET results discussed in Section IIl were obtained by solving the
coupled 1st-order PDE’'s (10) using Bulirsch and Stoer's [4] method of
rational extrapolation for ODE's. A full discussion of extrapolation
techniques can be gound in Gear {17] and Dahlquist and Bjorck [10].

111, RESULTS

Before comparing the MET results obtained by solving the PDE's
(10) with the close coupling equations (11) a short discussion on the
practical numerical methods used to solve (10) are in order. To do this
we quote the final expression used in the multichannel eikonal theory for




the complex scattering amplitude for the transition i - n,

A, +1
£ ,(8) = -(i) n JAin<q'p) (1,(p,7(8)) - i I,(p,¥(6))]1pdp (14)

O t—— ¢

where the integrals 11 and I2 are defined,

@ JC (py2)
I1(p,1) = Jr dz xn(p,z) 5 exp{i+(8)z] (15a)

-0

— 8

u
Iz(p,v) ® dz [Kn(xn-kn) + ;5 Vnn]Cn(p,z) exp[iv(6)z] (15b)

-
and refer the reader to the original literature [12,13,16] for the
details. In equations (14,15) q' = k, sin® and v(8) = kn(1-cosﬁ) and A,
=m -m. The 1st-order PDE's (10) are solved using Burlisch and
Stoer's rational extrapolation technique for ODE's over a finite
2-dimensional grid: o < p < pp .y = Zhax $ % S Zpay for the amplitude

functions Cn(p,z). The values of Pmax and 2z ax are varied until the

m
cross section,

P X
J[ma ICn(p,z

2
nax) | P20 (16)
(]

is computed to within a tolerence e¢ (i.e., until subsequent evaluations
change by less than an amount e (%)). An additional criterion for the
selection of optimal values of Pmax and Zmax is that the MET integral
cross section, computed from the scattering amplitude (14) should
converge to the 1st Born approximation at high incident energies. For
this to be achieved it was found necessary to solve (20) using a non-
linear grid in 2z in order that the rapid variation of Cn and aCn/Bz near
2z = 0 be accurately represented. This was needed so that the subsequent
evaluations of 11, 12 were accurate. The nonlinear grid in z used was:

10



z; =3 tan(i&),‘i = =N, .l with 6 = tan-1(zmax/3)/Nz. However, since
I1 and 12 must be evaluated numerically from the tabulated solution of
the coupled equations (10), the most efficient way of solving (10) is to
make the grid point$ z4 used to salve (10) and the pivots used in the
evaluation of 11, 12 identical. This avoids the need to interpolate
w.r.t. 2 in the quadrature of I1 and I2 (interpolation w.r.t. p must
still be done however). In the MET calculations discussed below, inte-
grals 11, I2 were evaluated using Simpson': -ule with the nonlinear

pivots z; chosen above and with weights wy = rié secz(ib), where ry are
the usual Simpson's rule weights and Nz is the number of points used to
discretize the z-range [o’zmax]’ Hence while the number of points
required for ar accurate evaluation of 11, 12 is much larger using
Simpson's rule as compared with using a higher-order -uadrature method,
the amount of time saved by eliminating the need to interpolate w.r.t. z
more than makes up for the increased number of grid/ pivot points z;
required.

In figure 1 the real and imaginary parts of the amplitude
function Cn(p.z) for the 1s state of hydrogen are shown as an example of
the type of behavior exhibited by the solutions of equation (10). For a
more extensive exhibition of the solutions of the semiclassical equations
(10) see (22].

In the remainder of Section III an overview of the MET results

for e +H collisions will be given. This will include differential and
integral cross sections as well as the complex scattering amplitudes.
For a complete update and discussion of the present MET see Mansky and
Flannery (23,24). It should be clear that by comparing the results
obtained for a wide range of physical observables, from'the solution of
equations (10) and (11), one not only gets an idea of the success or
failure of a particular theory over a wider range of physical conditions,
but also insight into the accuracy of the numerical solution of the
coupled equations underlying a given theory. That is, by varying Zmax
and Pmax in the semiclassical equations (10) until the integral cross
sections computed from (14), for all states in the basis set, have

11
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Figure 1: Real and imaginary parts of the MET amplitude function
C1s(p,z) versus z(ao) for e +H collisions at E = 54.40 eV.

converged to their corresponding 1st Born approximation values in the
limit of high energy, one obtains an idea of the minimum size 2-
dimensional grid required to solve the coupled PDE's (10). These values
of Ppax’ Zmax 3" then be used to solve (10) for all other energies of
interest. ©Note that a similar argument can be made about the numerical
solution of the coupled ODE's (11) where the appropriate parameters are
Fmax and emax - the maximum value of the independent variable CaB and the
largest partial wave 21 retained in t-2 expansion.

The MET differential and integral cross sections are defined as,

k

w n 2
0,(6) = -—1 £, (81 (17a)
or T "
o, = J de j sin6 de an(B) = 2% Jan(e) sin(0)de (17b)
0 ) o '

where the complex scattering amplitude for the transition i - n is given
by (14). In figures 2,3 the integral and differential cross sections for

12
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Figure 2a: Integral cross section Tap in units of ra°2 versus E (eV.).

ist Born (- - -), MET (23] (___), 3-state close coupling [18)

 E— ), DWSBA [20] (X), AVCC-18 state [9] (*), unitarized

Born [31] (+), experimental data of Long et al. [21] as re-

normalized by Bransden and McDowell [3] ((J), experimental

data of Long et al. [21) as renormalized by van Wyngaarden

and Walters [34] (0), experimental data of Williams {32] (A).
Figure 2b: Same as Fig. 2a except with AVCC-11 state (.....) [8].

e +H(1s » 2p) collisions are shown (results for other transitions in
hydrogen are given in [23]). The MET results are in good overall agree-
ment with experiment in figure 2, and clearly converge to the Born cross
section at high energy. In particular, the agreement (cf. figure 2b)
with the absolute measurement of Williams [32] at 54.40 eV is noteworthy.
The differences between the original algebraic variational close coupling
results of Callaway [8), and the same results as renormalized by van
Wyngaarden and Walters [34], is a choice of normalization (i.e., normali-
zation to experiment at 11 eV versus the pseudostate close coupling
calculations of van Wyngaarden and Walters [35] at 350 eV). On the other
hand, the differences between the 3-state close coupling results of
Kingston, Fon and Burke {18] (cf. figure 2a) and the MET results is an
indication of the lack of convergence w.r.t. basis set size in the former
calculation. The importance of basis set size is evident in comparing
the 3-state close coupling results of Kingston, Fon and Burke and the
18-state AVCC results of Callaway et al. [9) (cf. figure 2b). While the
MET results are in good agreement with the results of Callaway et al. for
energies £ > 70 eV, the differences observed in figure 2 at lower
energies is due to the neglect of electron exchange terms in the MET.
This is also eviden- in figure 3 by the rapid decrease of the MET

13




o
differential cross sections 023(9), aap(e) at scattering angles 6 > 40
when compared to the close coupling results of Kingston, Fon and Burke
(18] and van Wyngaarden and Walters [38]). The agreement between the MET

and the experimental data of Williams [32] for 6 < 20° in figure 3 also

indicates that the choices for z,

ax and Pmax in the solution of (10) were

correct.

From figure 3 one would conclude that electron exchange effects
are only important at large scattering angles. This is incorrect. While
a definitive calculation has not yet been done, the ongoing problem of
theory to reproduce the experimental data for the A, R and I parameters
indicates that theory is still not handling adequately the numerical
solution of the coupled equations (10) or (11). In figure 4 we show the

A, R and 1 parameters for e +H(1s -+ 2p) collisions at E = 54.40 eV and
scattering angles 6 < 50°. Clearly the MET results accurately reproduce
the experimental data of Williams [32] only for 6 < 20°, while at the

level of azp(e) the corresponding angular range was 6 < 40°. In con-
trast, the two close coupling results shown in figure 4 are in good

agreement with experiment out to approximately u0°. However, at larger
scattering angles (6 > 60°) the close coupling results fail to reproduce
the second experimental minimum in the A parameter observed around 100°

and the magnitude of the R parameter in the range 70° <0< 120°. These
facts taken together indicate that while the values of Znax' Pmax used to
solve (10) in the MET are adequate at the level of differential and
integral cross sections, the small z behavior of the amplitude functions
still needs refinement for physical observables directly dependent on the
complex scattering amplitude fni(e). For completeness, the A, R and I

parameters are defined,

A= e Pride 12 o 2le, 12 (18a)

R = VIN(TAY/2) cos(B, - B,) (18b)

1 = VIA(T-N)72) sin(B, - B,) (18¢c)
14
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Figure 3: Differential cross sections azs(e), azp(e) in aoz/str. vs. 6

for E = S4.40 eV. MET [23] (___), 3-state close coupling [18]
(---), pseudostate close coupling [35] (----), experimental
data of Williams [23] 0 (via sum), O via ratio).

where f _(8) = lfﬁ(e)l exp[iB, (8)] and f _(8) denotes the complex scatter-
ing amplitude for 2pm magnetic substate. For a complete discussion of
the angular correlation and polarization correlation parameters in
electron-atom scattering see Andersen et al. [1]. For more on the prob-

lem of the A, R and I parameters in e +H collisions see Morgan [28].

To better understand what part of the solution of the PDE's (10)
needs improvement, in regards to the A, R and I problem discussed above,
and where the electron exchange terms in (11) become important, we show
the MET results for the scattering amplitudes fzpo(e) and r2p1(e) at E =

S5U4.40 eV in figures 5 and 6, respectively. These are compared in figures
5,6 with the close coupling results of Kingston, Liew and Burke [19].

Two things are evident in these figures. First, that the electron
exchange terms in the close coupling equations (11) manifest themselves
quite differently in the modulus and phase angle of the scattering .
amplitude. For example, the phase angles for the singlet and triplet

spin channels for the pr (8) scattering amplitude differ from each other

o

appreciably for 6 > 30°, while for the f2p (8) they don't begin to differ
1

greatly until 6 > 40°. On the other hand, the modulii for the singlet

15




and triplet spin channels of the f2p (9), f2p (8) scattering amplitudes
o] 1

only differ appreciably for 6 < 20°, 8 < 30°, respectively. That is,
electron exchange terms are important at small scattering angles for the
moduli of scattering émplitudes, while for the corresponding phase
angles, they are important only at large scattering angles. This
indicates that unraveling the relative contributions that direct and
exchange terms make to a given scattering amplitude at a specific angle
will be difficult.

The second point to note from figure 5 is that the MET results

for the f2p (8) amplitude agrees quite closely at all angles with the
(o]
triplet spin channel results of Kingston, Liew and Burke. On the other

hand in figure 6 the MET results only agree with the singlet spin channel
results over a limited angular range. In particular the MET results
exceed both the singlet and triplet spin channel results for Ifzp (0)|

1

10 [ mtde of T B I B SR SR BRI RN W oy

"0 10 20 30 40 50

Figure 4: A, R and I parameters for the 2p state at E = 54.40 eV. MET
(23] (__), 3 state close coupling (18] (---), pseudostate
close coupling [35] (===-- ), experimental data of Williams
[32,33) O (A, R from [32], I from [33]).
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for 6 ¢ 20°. Note that we should not expect to see the MET results in
figu;es 5,6 ly;;g between the singlet and triplet spin channel results of
Kingston, Liew and Burke. Rather, the observed behavior of the modulii
and phase angles of the MET scattering amplitudes in figures 5,6 is a
direct result >f a complicated interplay between the z-behavior of the
amplitude functions Cn(p,z) and eikonal phases Sn(p,z). A detailed
discussion of these topics is beyond the scope of this lecture, but will
be the subject of a forthcoming paper.

Iv. CONCLUSIONS AND GENERAL REFERENCES

In this lecture we have contrasted solving coupled PDE's with
ODE's in electron-atom collision theory.' The principle conclusion of
this lecture is that the solutions of (10) and (11) are complementary.
That is, the configuration space representation employed by the MET, and
the angular momentum representation employed by close coupling theories,
complement one another, both in terms of information they provide about
the scattering event, and in the energy ranges over which they are valid.
This is important since it means that by solving (10) and (11) one gains
additional insight into a particular excitation process that would not be
obtained otherwise. This proved useful for example in the discussion of

8 :"""T”"‘T‘""'l LI B S 32 S S tie 0 he B oE RN JA LN B SR U b o by
1 3

11, 9

~d
Beta, )

Figure 5: Modulus |f | (in a ) and phase angle B (in radians) for
fzp(e) vs. 0 for E = 54.40 ev. MET (23] (__ ), 3 state close
coupling [19] O (singlet) {J (triplet).
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Figure 6: Same as Fig. 5 except for f2p (6).
1
the A, R and I problem in Section III. We end this lecture with a short
list of general references which we have found useful on the subject of
coupled ordinary and partial differential equations.

- Collatz, L., 1960, The Numerical Treatment of Differential Equations
3rd ed., Springer-Verlag.

- Dahlquist, G., 1956, Math. Scandinavica 4 33-50, 1959, Trans. Roy.
Inst. Tech., Stockholm, No. 130.

- Dahlquist, G., and Bjorck, A., 1974, Numerical Methods, Prentice Hall.

- Gear, C. W., 1971, Numerical Initial Value Problems in Ordering
Differential Equations, Prentice-Hall.

- Henrici, P., 1962, Discrete Variable Methods for Ordinary Differential

Equations, Wiley.
- Ince, E. L., 1956, Ordinary Differential Equations, Dover.

- Olver, P. J., 1986, Applications of Lie Groups to Differential
Equations, Springer-Verlag.
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ITERATIVE SOLUfEON OF LARGE LINEAR SYSTEMS AND HEAVY PARTICLE COLLISIONS:

ION-ION RECOMBINATION

E. J. Mansky
School of Physics
Georgia Institute of Technology
Atlanta, Georgia 30332

ABSTRACT

The solution of large sparse linear systems of algebraic equa-
tions arising from the discretization of coupled Boltzmann par-
tial integro-differential equations, which model ion-ion
recombination processes in dense gases, is discussed. The
advantages and limitations <f various representations of these
equations is provided. A detailed analysis is given of the
derivation and structure of the coefficient matrix o of the
resultant algebraic equations. The need for preconditioning the
algebraic equations through the calculation of the condition
number of the matrix o is highlighted. Approximate methods of
computing termolecular recombination rate coefficients via the
Debye-Smoluchowski equation and diffusion models in energy space
are also briefly discussed.

I. INTRODUCTION

In this lecture the numerical solution of large sets of linear
algebraic equations by iterative methods will be discussed with parti-
cular application to problems in heavy particle collisions. The physical
problem spscifically addressed is that of lon-ion recombination at
arbitrary gas densities. The determination of the rate of recombination
is governed by the solution of a pair of coupled Boltzmann-like integro-
differential equations (IDE's). The derivation of these coupled
Boltzmann equations from a more basic perspective involving the BBGKY
hierarchy of equations is reviewed in Section II. The solution of these
coupled IDE's provides a general framework for discussing the problem of
computing chemical reaction rates in dense plasmas. This is provided in




)

Section II along with a detailed discussion of the advantages and limita-
tions of transforming the IDE's into a set composed solely of differen-
tial equations (DE's) or integral equations (IE's). In all three repre-
sentations the problem of numerically solving the coupled Boltzmann
equations reduces to one of solving a set of simultaneous linear alge-
braic equations composed of a large. sparse, real, positive definite,
non-symmetric, ill-conditioned matrix. The solution of these algebraic
equations by iterative techniques is highlighted in Section II.

Historically, until the advent of supercomputers, the direct
solution of the coupled Boltzmann equations was generally avoided through
‘ne use of simplifying approximations because of the difficulty in soiv-
ing large sets of algebraic equations. In Section III the link between
the coupled Boltzmann equations and it's approximations is given, 1In
particular the formulation of the problem in terms of diffusion equations
{in energy space) and Debye-Smoluchowski equations is accentuated in
Section III. The conclusions of this lecture and a list of general
references is given in Section IV,

II. BOLTZMANN EQUATION TREATMENT OF IONIC RECOMBINATION

The overall goal of the type of calculations described in this
lecture is the prediction from a microscopic viewpoint, of the rate of
chemical reactions in dense gases. The proto-type chemical reaction we
are primarily interested in is that of ion-ion recombination at arbitrary
gas densities,

- #»
X"+ Y + 28 (xY] +z (1

whereby free ions (x’,Y’) are converted into diatomic molecules XY
(usually in some metastable state denoted by *). We will assume that the
number density of third bodies Z is arbitrary, but that the free ion
number densities is sufficiently low so that the interaction potential
between ions is strictly Coulombic. This will necessarily exclude from
discussion dynamic screening effects in dense plasmas. We will also not
discuss the related problem of ion-atom association,
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which is an important mechanism by which molecular ions are formed in
interstellar media and in laboratory plasmas. To solve both problems
from a microscopic standpoint will require a great deal of information on
the full three-body sector of phase space which is beyond the scope of
this lecture to provide. Anyway, before the latter two problems can be
solved, a complete understanding of the solution of the termolecular
recombination rate in the limit of low ionic density and arbitrary gas
density will be needed.

We are interested in computing in this lecture microscopic reac-
tion rates which the reader should take to mean that the reaction rates
will be expressed in terms of the phase space distribution functions rN
for the N particles comprising the three component plasma (positively and
negatively charged particles as well as 2utral species) undergoing
termolecular recombination. OQur starting point is the BBGKY hierarchy of
equations,

= = - Xsfs + nIs fs+ s=123,...,N1 (2)

1

which is a set of coupled equations for the s-particle reduced

. - ey _ y=-(N-s)
distribution functions fs = fs(xi,xz,...,xs,t) =V dxm1 de*z

ces J de fN(x1,...,xN;t) with V denoting the total volume of phase space

and xiz(Fi,Bl) denotes the 6-dimensional phase space point for particle
i. In equationr(Z), the Hamiltonian operator for s particles of equal
mass m is defined,

;
=) T RhoT e ) 8y 3
i=1 1§1<J¢s

where ?1 is the external force on particle i, and the interaction
operator between particles i and j, is
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with the interaction potential between particles i and j denoted ’ij’
The phase-mixing operator ws in the BBGKY equations (2) is defined,

s

. [

b = 2 ] 9X g Oi,s+1 (5)
i=1

and the number density n in (2) is n = N/V. For a detailed derivation of
the BBGKY hierarchy (2) the reader is referred to the statistical
mechanical literature (Akhiezer et al. [1], Balescu [3,4], Chapman and
Cowling [13], Ferziger and Kaper [18] and Tolman [41]).

Since in ionic recombination we are interested in the formation
of diatomic molecules, it is natural to assume that the most important
reduced distribution functions in the three component plasma are those
for one and two particles. Hence we will truncate the BBGKY hierarchy of
equations at f3 and concentrate on the equations for f1, fé. Also, since
we are interested only in the recombination of positively and negatively
charged particles to form neutral diatomic molecules, it follows that the
main determining factor in computing a, the rate of reaction (1) will be

the pair correlation function gé’°) between X and Y~. From this we

conclude that a separate BBGKY hierarchy (2) will be required for each
component of the plasma. These hierarchies for the three component
plasma are,

o) o gl9dele) | glendelen) L plemdglem) |y endglom) (6a)
Ho) o {90 ploedploe) L gleodgl=) () plom) (6b)
B0, _y{mp(n) | (medglne) | yndglno) | (om)(om) (6e)
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?é"") . _,énn)rénn) . Ténn+)r§nn+) . wénn-)rgnn-) . fénnn)fgnnn) (76)
where the superscripts +, -, n indicates a positively or negatively

charged particle or a neutral species, respectively, and the dots
indicate differentiation w.r.t. time.

The set of coupled equations (6,7) are closed by use of the
cluster expansion (Ferziger and Kaper {18]) wherein the 3 particle
distributions f3 are written as functionals of the 1 and 2-particle
distribution functions. The latter functions are written in turn as
functionals of f1 thereby closing the set of equations (6,7). For a
detalled derivation of these equations see Mansky [35] and Flannery and
Mansky [28]. Since we are primarily interested in the numerical aspects
of the problem of computing ionic recombination rates a in this lecture,
we will omit the details of the subsequent reduction of the coupled
equations (6,7) to the working equations (8), but refer the reader to the
above two references as well as two earlier important papers of
Flannery's [24,25].

Therefore, after reduction, the final steady state working
equations are

1/r
r J‘ p*(r,u)F(A,u.;r)du

-0

r' o*(r,A)%(r,A)  (8a)

1 apT(r,A) 1A . )
[; - )\] S *7F [; - 2)\][p (r,A)=p (r,A)]

1 d(e,N) e
-[;- - A] -5 = I p (r,u)F(X\,u;r)du

r' p (r,A)8(r,A) (8b)
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=r f p (r,u)F(A,u;r)du

-1 p*(r,A)5(r,A)  (8ec)

1y (e 1 . "o
-[; - R] e - ;‘ F - ZA{[P (e ,A)-p (e,N)] = T J- p (P.M)F(Mu;l‘)du

-T' p (r,N)3(r,\) (8d)

1

where equations (8a,b) are valid for region I: - < A ¢ 37 and (8¢c,d)
1 1

are valid for region II: 5 < A <7 (see figure 1). The functions

p(t)(r,k) represented the number density of ion-pairs expanding (+) and
contracting (-) at a given relative separation r and internal energy A in
phase space. The p's are just the ratio of the number density of
ion-pairs undergoing recombination to the equilibrium number density

(i.e., p(t)(r,A) z n(t)(r,A)/neq). The working equations (8) are written
in terms of dimensionless natural variables which are defined,

r = r12/Re, A= -EllkT, u = -Er/kT

where Re = ez/kT and I'' = r e-A, r= ;JE- FO,
(N(Z)QD)'1. Hence the dependence on gas density in (8) is contained in
the constant [, which also depends on the masses via,

A = R_/A

mfp = e/ mep’ Mmep =

[(14‘c)/c]3/2 , charge transfer

r s (1+a)2/a3/2 , hard sphere

V372 (1+a)5/2/a3/2, polarization
and,
/r
F(r,A\) a I F(A,u;r)dp
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Figure 1: Illustration of A, r phase space domain of equation (8).

The detailed formulae for the energy-change rate coefficients F(A,u;r)
for the energy transfer mechanisms of charge-transfer, hard sphere and
polarization collisions need not concern us here, but can be found in the
original literature Flannery [21-23] and Flannery and Mansky [27]). In
the definition of ro the mass ratio parameters are defined,

[+
[l

z m2m3/m1(m1+m2+m3)

(2]
"

m1/m2

where m,, m, and L) are the masses of X', Y~ and Z, respectively.

The functions pz(r,k) are not completely determined by the working
equations (8) until their associated boundary conditions are specified,



- pr(r, \-m) = 1 (9a)
pt(rem,h) =1 forx¢<O (9b)
p {rzo,A) = p (r=o,A) (Sc)
1 1
p'(r,}-) z p'.(r,;) (94)

Before we convert the working equations (8) into a set of practical,
numerical equations we will discuss the relative computational merits of
transforming the integro-differential equations (8) into equivalent
differential equations or integral equations.

Technically, the working equations (8) are coupled Volterra partial

integro-differential equations (PIDE's). They are 13t.order in r and
1-dimensional in A meaning that the highest derivative in r appearing in
(8) is the first, while only single integrals w.r.t. A appear. To

convert (8) into a set of PDE's define the functions ;t(r,k) by

| 8p(r,\)
F(u,A;r) o)

p(r,A) = (10)

vielding,

11
10 ap'(r,A) F[F'z"] laz*(r,x) 3p (r,A)
N 3 {Flu,A;r) oA ] * Flu,n;r) | on - 1N ]

#(r,A) dp (r,\)

[ ]
*U o o

= P p(r, D) - pT(r, =) (11a)

1 a 1 6;'(P,A)] F(e,A) dp (r,A\) 1

N FEFaan )t Pfm v - rtip (e, 2)-p (r, )]
(11b)

1A aB’(r,A)] F(r,A) dp (r,A) 1

N ar [F(u,A;r) A * r‘F(u.A;r) an rie (r;;)-p'(r,-w)]
(11¢)

———
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-GN FFEAaT oA ] T Eae) on T FGar) [:»\ - aA]
o, 1 e
=I'[p (~.7)-p (r,-®)] (11d)

Performing the indicated differentiation w.r.t. r and rearranging terms

results in the following set of coupled hyperbolic an-order partial
differential equations,

1 1.1 1 .
[?‘ "] 325" (e 0) ?[F' 2"] [F' *]F'“"“” r'$(r,A) 1 3°(r,A)

F(u,A;r)  Oron * [ Flu,Ar) (F(“,A’;r))z * TF(p,Nr) FTY

1.1
F[F - 2*] ap(r,N)
~ F(u,A;r) N

1
= r'[',;*(r,;) -p(r,-®)]  (12a)

- A]F'(u,x;r)

1 1
‘[F B "] 3% (r,A) [r's(r.n [‘F dp (r,A)
F(u,A;r)  OroA F(u,A;r) (F(p,h,;r))z A
- 1 N am
= ' [p7(r,7) - 5 (r,==)] (12b)

1 1
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(F(u,A, 5r))2

1 -
= M p"(r,2) - B (r,-)] (12¢)

11 1
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1
‘[F - "] 325" (r N

r
F(pu,A3r)  drdl * [ F(u,A;r) * Flu,A;r)] oA

(Flu,hy 5002
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- =1z = 2\ G5t
- F()l,/\;r) dk

1
= 0T (e,m) - b (rp- ] (120)

«ith the boundary conditions at the turning point (A = {/r) and in the
continuum (A » -=) incorporated into the RHS of (12). Equations (12a,b)
are valid only in region I, while (12c,d) are valid only in region II.
Note that primes on F(u,\;r) in (12) denote differentiation w.r.t. r, and
that F(u,A;r) = F(ausr).

To convert (8) into an analogous set of coupled integral equa-

tions, define the functions Et(r,A) by,

r
pX(r,A) = j P (r' ,N)dr! (13)
)

yielding,

1 11 r
(= - NN - N« (F=20 j (p"(r*,A) - p (r',A)]ar!
o

/v r r
= I du F(A,u3r) f';+(r',u)dr‘ - ' %(r,A) j o (r* A)dr' (13a)
-3 [o] [o)
1 i/r r
-z =AM (r,N)- P o)) = I _[duF(h,u;r‘) f’é’(r' ,u)dr’
L o]

r
- r'ﬂ(«-,z\)j~ 27(e' ,A)drt (13b)
Q

1 /r r
(; - Mp'(r,A) - oo, = I J du F(a,uiv) j o (e, w)dr

.
- ' %(r,A) I?(r',ndr' (13¢)
Q
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Rearranging terms in (13) to show the couplings present between the

integral equations gives,

1 _ 11 o
(; - A) pr(r,A) + ( z ( 7 2A) + I F(e,A) ] Jr—p*(r',)\)dr‘
0
1/r r r
r [ 5 Ll [7
- ] du F(A,p;r) j p (r',p)dr' - .y (; ~2A) ] p (r*,N)dr’
-0 [} [o]

1
- (< -A)p (o,A) (14a)

1 r
- (-; -A) p (r,A) &+ T F(r,A) };-(r',k)dr'
[+]
1i/r r 1
- I Idu F(A,u;r) I;—(P',u)dr' z - (F - N) ;_(o,)\) (14b)
-0 Q
1 r
(= - N 2T (r,A) + T 3(r,N) Jf 2 (et ,\)dr!
o]
1/r r 1
-r fdu F(A,u;r) Jf?(r',u)dr' = (= - N) B (0,A) (1he)
-0 Pe)
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- 0 Q
1

:-(3-N 2 (0,A) (14d)
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where the boundary condition at r = o has been incorporated into the RHS
of (14). The three representations .of the coupled Boltzmann equations
(equations (8), (12) and (14)) all require the same number of quadratures

to obtain a solution - namely two each for p+(r,A) and p (r,\). However,
our reason for giving the details of the transformation between represen-
tations (cf. equations {10), (13)) is to highlight the different types of
boundary conditions required in each case. In the case of the PDE's
(12), it is clear from (10) :znat the required boundary conditions on

Et(r,A) should be global in energy and local in r, while in the case of

(14) the boundary conditions on ;t(r,k) should be local in energy and
global in r. We use the word global to indicate that the integrand of an
integral w.r.t. the specified degree of freedom is required as a boundary
condition. Otherwise it is called a local boundary condition (e.g.,
equation (9) is local in both r and A). Therefore, from (10) and (13) it
is clear that the boundary conditions for the PDE and IE representations
are of a mixed nature, and will be difficult to implement numerically.

It should be clear however that in all three cases (egs. (8), (12) and
(14)), after discretization, the basic problem numerically is the same -
namely one of solving a set of simulataneous algebraic equations for the
PIDE representation (8) (these are the practical equations mentioned
earlier), and leave it to the reader to write down the corresponding sets
of equations for the other representations (12), (14).

Numerical Solution of PIDE's

To convert the coupled PIDE's (8) into algebraic equations, four
steps need to be taken:

(1) Replace all derivatives with finite differences. If the PIDE is
part of an initial value problem, the choice of either forward
or backward differences will depend on the boundary conditions.

(ii) Replace all integrals with quadrature sums. The choice of quad-
rature rule is crucial in determining the overall stability and
convergence rate of the resulting algorithm. The type of quad-
rature rule chosen in turn depends on the global behavior of the

12




integrand over all of phase space. Hence, for a multidimensional
kernal, this step can easily be the most time consuming one in
preparing for the full solution.

Impose all boundary conditions on the algebraic equations
Make sure that the boundary

(iii)
resulting from steps (i) and (ii,.
conditions used lead to a well-posed problem with a non-singular
coefficient matrix.

(iv) Finally, choose a technique for solving the resultant set of
algebraic equations which takes advantage as much as possible of
the structure of the coefficient matrix. Compute the condition
number of the coefficient matrix and determine whether the alge-
braic equations need preconditioning.

Therefore, discretizing r - ry = {o,r1,r2,...,rmax = ry } with N,

+ 1 equally spaced points (step size h), and replacing integrals with
quadrature sums (with weight functions ¢k) yields the following for (8),

+ +
(Pi1,57Pio1, 5!

. + - . + . +
Tyy 2h MR I TR N TR E % FaeiPi = ©
K
(15a)
[”I+1,J‘”I-1,J] ) < )
-1y, - $ Ty 3000 = T ) b Frgpyy = © (15b)
K
+ +
(pi*1’J'p1_1’J] . Y .
Tiy 2h Ty 3Pig =Ty L % FaeiPi = 0 (15¢)
K
o101, 5P1o1, ] .
“Tiy 2h -rgljl(pij S Py e T F Ry - 0 § P FixiPix = O
K
{15d)
A 1

] - - 2A
r

where FJ =l e , FJki = F(AJ'uk;ri)’ 31.):5("1)}“’)’ ‘gij = !.—1' ( ) J)v
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It will prove convenient to rearrange eguations (15) into the
order (15a,c), followed by (15b,d), 30 that the resultant coefficient
matrix is positive definite (Golub and van Loan {30]). Then applying the
boundary conditions on r yields,

1-5, - 2h r 4 1 *
-(1-8,,) i)1”1 19, } 173, %,F 1yt ™ %yg, g, 1Y, 111)]”1k1
K,
-onrt Y e F Pt~ 2n 8. pT. + (1= )p*
3 % o' Jykot Py 11, P11, N P1e1, 5,
2
=8P (r:o,?\%) + oy P (rmx,)\J1) {16a)
+ ]
'("510)7132”1-1,32 2 Ty E *e,F 1kt ”ik

1

- 2h [r -6 r s, ]p’ + (16, )p,
2 12 2 kol ™ %kydy T 157 1451P 1k, N PLat, g,

10? (r-o Aj )+ 61N P (rmax’ J2) (16b)
(1-6, )T, ., ¢, ~ 2h [r' F - '3, } 3
io) 13,°1-1,4, Z 3%, 100 7 ey, rjtngt Pik,
1
-2y - (1-
2 AR ”1k2 (1-8y )91*1 J
P
2 6lop°(r=o,hjl) + 61Nrp-(rmax'h11? (16¢c)
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2
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and where the indices are defined: 1 < i ¢ Nr'1’ -Nc < j1 < Nb1’ Nb1 <
1
j2 < sz and -Nc < k1 < Nbl, Nb1 < k2 $,Nb2' The energy range [-=, F]
1 1 1
has been discretized into three grids: [-xmax,o], (o, 5;:], [E;I, ;I]

composed of NC + 1, N + 1 and Nb - Nb points, respectively. The

b
1 2 1
total number of points in the energy grid is Nc + Nb . Hence the
2
subscripts 11, k1 indicate that the energy is restricted to region I:
1
['Amax’ 5;;], while 12, k2 indicate that the energy is restricted to
1 1

region II: [5;;, FI]. The parameter Amax represents the largest free
ion energy considered. More details on the energy grid are given below.

Now, before applying the boundary conditions on A (equations
9a,d)), a word is needed on continuity conditions. In equation (8) the

A,r phase space is divided into 2 regions. Since we assume that the

unknowns pt(r,A) are smooth functions of A and r, we must insure that the
computed solutions of (16) are continuous across the boundary between
regions I and II. We do this by recognizing that (16a,b) are 2 equations
for the same unknown when 11 = 12 = Nb1' Therefore, we can add the two

equations together and divide by 2. This insures that we will not have
an overdetermined system of equations. In the case where j1 and 12 don't

equal Nb , the appropriate terms from the k

1 and k2 summations (i.e., the
1
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last in k, and the first in k2) must be added together in (16a,b). These

two Steps will insure that p*(P,A) is continuous at A = 1/2r. Analogous

additions in equations (16c,d) will likewise insure that p—(r,A) will be
continuous at N\ = 1/2r. Therefore, applying the steps above to insure
continuity in the solution, and the boundary conditions on A yields the

following set of practical algebraic equations,

1 + _( (i)+ + (i)+ ¢ (1)« +
(18,0745 Ly, . é 4ok Pl J1Nb E ‘s Pk
1
. - (i)+
- 2h siJ] pij1 + (1- 61N )p1 ) 3, ”11 (17a)
(i)+ + (1)+ + (i)+
1
~1=05,)T 13, - ») E AJzkr "1k, ~ Jz b, b 2 a‘Jz 2
Ky
(1)+
+ {1~ 61N )pi+1 32 12 (17b)
) SRR ) S TI S u)- -
0 %10T19,P1-1, 3, Z 1k, Pk, " j1Nb 2 )k Pli,
1
(1)-
- - .S (D - () -
(1 610”132"1-1,12 eh '9132' P13, Z 3%, Pik, 612Nb1 ”mb1
1
E A(” p ~ (1-6,, )p: .- N (17d)
Xy iN ”1*1,12 =
k r

3,

where the coefficient matrix # and column vector % are defined as,
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(1)-

A 28, p(r=o,A, ) + O,y p (r . A, ) + & anr' ¢, F Pe
1oP (£30:34 iN max’ ™) Nk 1.0 FyN tPiN
J 1 r 1 b, 2 1V, I, N,
- [
+ b p. 2hilt ¢ F -6 r 3 (19¢)
ky-Ng 1, =N, Ty TN TIyNGL T Tigdy Sy T,
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A = 6. p (Przo,A, )+ 0., p (r A, )+ b 2nrt ¢ o Fo v Py _
jz io 15 N max’ 12 k1'Nc j2 -Nc J2 Nci i, Nc
+ 6,y 2nls, o7,y - Pin )
2
2 b2 2 b2 b2
+ 5 ehir* (19d)

¢ F -5 r s ]p'
KoMy, Ja Mo, IMe, b kada J2 i 1Nb2

The elements of the coefficient matrix o which govern the continuity of

the solutions pt at the boundary between regions I and II are denoted by
€ in (17) and are defined,

£(1)+

= 4h T F -6, 2hT. S (20a)
J1"b1 3y o J1Nb1 3y 13
(i)+

€ = 4h I F (20b)
JaMy, JZ¢Nb1 JZNb1i
(i)-

. = u ] - '

cJ1Nb1 h ¢Nb1FJ X 11 6J1Nb12h r11$111 (20¢)
(i)~

€ = 4n F (204)
J2"b1 12¢Nb1 Jz"u,‘

The index i in (17) is defined as before, while in (17a,c¢c) J1 is defined:

N1 < S € Nb1' and in (17b,d) J5 1s defined: Nb1+1 LN PR Nb2-1. The
primes on the k1 and k2 summations in (17) denote that the A boundary

terms are omitted (i.e., k, = -N, and ky = N, ). The primes also
2
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indicate that the terms with k1 = Nb and k2 = Nb have been factored-out
- 1 2

of the summation (and are represented by the '€ terms).
The algebraic equations (17) can be written in the familiar

matrix notation,
Ap = (21)

where 4 and * are given by (18,19), respectively, and p is the unknown
column vector composed of the discretized elements of p+ first, then p .

The known column vector 3, composed of boundary conditions on pt, has
been written in full detail in (19) in order to show exactly how each
boundary condition contributes to the problem. In practice, after
application of (9), (19) will simplify considerably. From (18) it is
clear that the coefficient matrix o is non-symmetric due to the presence
of the gij and rgijl terms. The overall structure of the coefficient
matrix is shown in figure 2.

The energy grid chosen was nonlinear due to the skew discontinuity
present in the kernals F(A,u;r) (Flannery [22,23]). In particular, we
use the 3tan(u) prescription of Bates and Menda$ [8] for the pivot points
used in the Simpson's rule quadratures in (17). That is, the weights and
pivots used in the energy quadratures are defined for the three grids as,

N = 3tan(k€), @ = r € sec? (k)
with,

(i) continuum part of region I: “Npax $MLO -N,
1

€ = tan~ (\pay/3) /N,

I~
=~
I~
o

1 ,k:-Nc,O
even integer in (-Nc,O)
odd integer in (-Nc,O)

-3

"
-

"

n
X x
n
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Figure 2: Structure of coefficient matrix 4 in equation (21). a) bloeck
tri-diagonal in r, b) non-symmetric, positive-definite in A.

(ii) bound state part

£

and,

1
of region I: 0 < A ¢ r 0 <k <Ny
i 1
= tan"(wer,)/ub
1
1 , k=0, l\lb1
=¢{ 4 , k = even integer in (O,Nb )
1
2 , k = odd integer in (O,Nb )
1
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1 1
. (111) region II: 35— <A <o Ny <k <Ny
i i 1 2

>
"

3tan[§mih + (k'Nb1)§] $ = € sec2[§min + (k-Nb1)f]

n
"

o tan (1/60) € = [tan”'(1/3r)) - can“(wsri)]/(ubz-ub )

1

1 , k=N, N

b b

1 2
r, =4 % , k = even integer in (Nb1’Nb2)
2 , k = odd integer in (N_ ,N )
b’ b,
Denoting the total number of points in the energy quadrature by NA = Nc +

Ny -2, and the total number of simultaneous equations in (21) by N
2
(Nr'1) 2 N, = Z(Nr°1)(uc’Nb2-2)' A typical value for N is 20,988 for Nr

= 100, Nc = 36 and sz = 72. Hence, due to the very large sparse nature
of the coefficient matrix 4, the use of direct techniques like Gaussian
elimination to solve (21) will be totally out of the question because of
the time and memory requirements involved. Therefore iterative
techniques like Lanczos algorithms (Cullum and Willoughby {15], Golub and
van Loan [30], accelerated successive overrelaxation methods (Young [U2],
Hageman and Young [32]) and Tchebychev iteration (Manteuffel (36,37])
should be used to solve (21).

Consequently, before continuing our discussion of the solution of
(21), we will review some of the iterative techniques used to deal with
large linear systems. For readers interested in a complete treatment
consult the books listed in section IV - especially those by Young and
Hageman and.Young.

Iterative Methods for Large Linear Systems
Solve the matrix equation Ax = B where A is an N x N real, symme-

tric positive definite matrix, and x, B are column vectors of length N.
Decompose A into three parts: a) it's diagonal elements (D), (b) all
elements below the diagonal (CL) and (c) all elements above the diagonal
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(Cu), That is, we can write A = D - CL - Cu. Now, scale the problem so
the diagonal elements of the new coefficient matrix are 1. This can be

172
done by multiplying by D ",

0172 4 p=172y(p12 x) = -2y (22)
-1/2 -1/2 0 v2 | -V2 -2, <172 =172 -172
- D (D -C_-cp =D DD - D" 'S¢, D -D c,D
=1-L-0% (23)
=] - B
where I is the identity matrix and L = p~1/2 L D'”z, BsLa+L:. Then,

/2 D—1/2

from (22), defining the column vectors u = D1 X, C = b allows the

original problem to be case into the suggestive form,
u=Bu+ec (24)
which is then solved iteratively.

Two of the most widely used iterative methods are the Jacobi
method,

w1 g (M L (25a)
and the Gauss-Seidel method,

u(n*1) =L u(n+1) + Lt u(") + 0

»
L9
=

+ K (25b)

where k = (1 - L) c, £ = (1-0)"' L% and in (25) u'™) denotes the nth

iteration of u. More recently variants on the Gauss-Seidel method have
been developed to speed the convergence of the iteration procedure. One
of the variants is the successive overrelaxation method (SOR),
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WL W)t ML c) + (1 -w) u(™

e o™ Lk (25¢)

W W

~ithe = (1 - mL)-1 (w Lt . (1-w)I), ku z m(I-«.:I..)'1 c. The parameter w

is known as the acceleration parameter. When w = 1 (25¢) reduces to the
Gauss-Siedel method (25b). A generalization of the SOR method involves 2
SOR sweeps for each iteration of u, and is called the symmetric succes-
sive overrelaxation method (SSOR),

G2y () | (for.) (25d)
w w
LSy (ne1/2) | (back.) (25e)
W W

where the operator Iu is defined above, and %u = (I - th)-1(wL + (1-w)I)

(for.) _ -1 k(back.) _
» z

and k = w(l - wl)” ' e, (I - w®H e, Equations

(A ]
(25d,e) can be combined into one iteration step by defining the operator
Y =14 £,

W w
WM Ly () g (25¢)

w W

where ku zw (Z-w)(l-th)-1(I-wL)—1 c.

In the SOR and SSOR methods one must choose an acceleration para-
meter w which will be optimal for a given coefficient matrix A. Two
widely used methods of acceleration are Chebyshev acceleration and
conjugate gradient acceleration. Writing the basic iteration procedure

(24) as u(n’1) z '8 u(n) + k, Chebyskev acceleration is defined,

(o) (n) (n-1)

= P ql(18u + k) + (1-1)u(n)} + (1-p qlu (26a)

where v = 2/(2-M('8)-m('8)] ard,
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, = 8

2,..~1
Ppyq = (1 - 0/72) , N = s+l

(1 - (022 5 17", 0 se2

with o = [M(:6)-m('£)]/[2 - M('6)-m($)], M('6) = maximum eigenvalue of matrix
4, m('$) = minimum eigenvalue of ‘4. The integer s is initially zero, then
increased as the adaptive procedure proceeds (Grimes et al, [31]). That
is, one can reassign the overrelaxation parameter p several times during
the iteration process. A disadvantage of Chebyshev acceleration is that
it requires estimates of the smallest and largest eigenvalues of ‘¢ to be

made.
Conjugate gradient acceleration is defined,
(ne1) (n) (n) (n-1)
u - pn+1 (7n¢1 b *u )+ (1 - pn+1)u (26b)
(n+1) _ o £(0) (n) (n-1)

6 = Py (’n+1 g 6 + (1-1n+1) ) + (1 - pn*1)6 (26¢c)
where 6(n) is a pseudo-residual vector given by: b(n) =8 u(n) + k -
u(n). The acceleration parameters p and v are defined,

1 y N =0
- 1
Pret © 2l
Tnety 60 GE g 50
- 5
[1npn 6(n-1)t Htﬂb(n-1)
[ s(ME Gty g s(M
) = 1 - ]
nel 6(n)c Wt W 6(n)

where W is a nonsingular symmetrization matrix. For the Jacobi method W

1/2 -1/2

= D', while for the SSOR method W = (1/w) D~ V/2(D - w CE)- While the
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conjugate gradient acceleration method doesn't require estimation of the
eigerivalues of”'$, the number of arithmetic operations required for it's
implementation is greater.

We have necessarily been selective and brief in our discussion
of iterative methods due to the vastness of this area of linear algebra.
The discussion of this subsection is based upon appendix A in the )
technical report of Grimes et al. [31]). Two excellent books which
provide good introductions to this area are Young [42] and Hageman and
Young [32] (others can be found in the list of general references in
section IV). As for software which implements the iterative techniques
discussed above (as well as others not discussed here), excellent
packages are the ITPACK library (Grimes et al. [31]) and the package of
Lanczos algorithms of Cullum and Willoughby [15].

So far we have only discussed iterative techniques for symmetric

coefficient matrices 4. However, the central numerical problem of this
lecture is to solve equation (21) for a large, sparse non-symmetric
matrix 4. Unfortunately there is much less known in linear algebra about
iterative techniques for non-symmetric matrices. One way to handle
non-symmetric matrices 4 is to consider (instead of (21) for example) the

associated equation dtdp = dtm, where dtd is a symmetric coefficient

matrix. However, in many practical applications the condition number of

dtd is much greater than that of 4 - thereby indicating that this
technique will not necessarily yield a problem which will converge
rapidly using one of the iterative techniques discussed above. Another
way to deal with non-symmetric problems is to develop the appropriate
generalizations of (25,26) directly (Young and Jea [43], Manteuffel
[36,37]). However, these generalizations require knowledge of the eigen-
value spectrum of '$ which is difficult to obtain in practice. In summary
then, while some progress has been made in lineai' algebra towards
handling the non-symmetric case, much more work needs to be done in
devising criteria by which one can select acceleration parameters which
will be optimal for a given general coefficient matrix $.

Returning now to our discussion of the numeri~al solution of (21)
for non-symmetric o, we will need to know the condition number x(d) for |
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the coefficient matrix # before using one of the iterative techniques
above. The condition number of a matrix o is defined: «(4) = ||d||

||d°1ll. Computing the condition number of the coefficient matrix in a
given problem {e.g., equation (21)) is necessary because the iterative
techniques discussed above (like SSOR) work best for well-conditioned
matrices (i.e., those with small «). Otherwise, the number of iterations
required for convergence will increase greatly, and since « provides a
measure of the sensitivity of a given protlem to round-off errors and
perturbations, if « is too large for a given o, then iterative techniques
will not work due to accumulation of round-off errors. Physically, the
condition number of a matrix 4 provides a measure of the distance between
4 and the set of angular matrices. Hence, when «(dA) is very large the
matrix 4 is considered ill-conditioned, which means that the numerical
solution u, of (24) say, will be very sensitive to round-off error which
are unavoidably accumulated during the iteration process. More details
about condition numbers in linear algebra can be found in Golub and van
Loan [30].

Using the routine LFCRG in the IMSL library [33] to estimate the
condition number x1(d), via the algorithm of Cline et al. [14], of the

coefficient matrix of equation (17) we find that x,(w) ~ 4,20 1019.

In contrast x1(d) = 1751.1 for the coefficient matrix « resulting from
the discretization of the quasi-equilibrium integral equation (29). This
indicates that the condition number for the coefficient matrix of (17)
needs to be reduced approximately 16 orders of magnitude before the
iterative techniques (25,26) will become effective. This can be
accomplished either by row scaling (Golob and van Loan [30]) or pre-
conditioning (Faber and Manteuffel [17]) the coefficient matrix.
Unfortunately, these calculations have not been completed at the time

of writing but will be reported in a forthcoming paper (Flannery and
Mansky (28]). Hence, it is still an open question whether the iterative
techniques discussed above are effective in solving (17). However our
discusaion of the condition number x1(d) of o given by (18) has revealed
the underlying reason why the earlier work of [8), failed to converge
quickly as a functlon of gas density N(Z). Also, by illustrating the
structure of the coefficient matrix in figure 2 and equation (18), a
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deeper insight into the role the gas density plays in the nonlinear
pressure regime” is obtained. 1In fact once the problem of the
ill-condition of 4 is solved, a number of other problems in chemical
physics should become ameniable to the iterative techniques discussed in
this lecture including the prediction of microscopic three-body
ion-neutral association rates (Bates and McKibben [7]), and the inclusion
of non-thermal effects into ion-ion recombination (Bates et al. [6]).

Before ending section Il we wish to discuss the numerical solu-
tion of integral equations briefly. This is necessary because much of
the numerical analysis of PIDE's relies heavily upon the expertise gained
in solving related one-dimensional integral equations. The IE we will
use as an example will be the quasi-equilibrium integral equation arising
in ion-ion recombination. We will necessarily be brief since the numeri-
cal analysis of integral equations (even one-dimensional ones) is a vast
field and we only wish to highlight points about the numerical treatment
of IE's which are related to our earlier discussion of PIDE's. For a
complete discussion of the numerical treatment of IE's see Baker [2].

In discussing the quasi-equilibrium theory of ion-ion recombina-

tion it will prove useful to define the functions ps(r,k) and pD(r,A),

1

o2(r,N) = 5 [6°(r,0) = p7(r,N)] (27a)

1

p5(r,N) = 5 [6°(eA) = p7(r,\)] (27b)

"

which describe physically the net and total numbers of ion pairs
undergoing recombination at a given relative separation r and internal
energy A. Substituting (27) into (8) yields two coupled PIDE's valid for

r’
1 aP(r,A) 11 b \/r S
(z -7 o tr(z-22)p(rN) =T I p (r,u)F(A,u,;r)du
S
- T 3(r,N)p (r,A) (28a)
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23S 1/r
1 dp (r,A) 1 1 D D
(= -7 o +;b-2MpUA)=PJ p (r,u)F(N,u,;r)du

- E(e,Np (e, ) (28b)

In the quasi-equilibrium theory the motion of the center of mass of the
ion pairs is taken to be in thermodynamic equilibrium with the third
bodies, while a quasi-equilibrium distribution in highly excited intermal
energy states of the ion pairs is established effectively instantaneously
due to collisions with the much more numerocus third bodies. In the
establishment of this distribution it is assumed that the distribution of
separations of ion pairs does not effect the quasi-equilibrium distribu-
tion in internal energy. That is, the r dependence of the distributions

p*(r,A), p (r,\) is not influenced by the recombination proceeding in the
plasma. Hence we can assume that the r-distributions of contracting and
expanding ion pairs is in thermodynamic equilibrium, thereby implying

that pD(r,A) = 0. This results in (28b) indicating that ps(r,A) is a

constant w.r.t. r. Multiplying (28a) by r2 and integrating w.r.t. r
yields the quasi-equilibrium integral equation for the distribution over

internal energy states ng(A),
€

[A)
I F(A,u)pgg(u)du = ng(A) J F(A,u)du (29)

where w is the maximum binding energy of an ion pair, and ¢ is the
stabilization energy of an ion pair. We refer the reader to the original
literature (Bates and Moffett [12], Bates and Flannery [S5}, Bates and
Menda$ [11], and Flannery (22,23]) for the details.

Equation (29) is valid only in the low gas density limit where
the flow of contracting and expanding ion pairs balance, at higher gas
densities however a net contraction of ion pairs occurs so that the full
PIDE (8) must be solved. We quote the expression for the recombination
rate coefficient a for the low density limit from the original literature
cited above,
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- [ [ 4 F S S
= A - 0
a/a,r = ro J dAN J du F( '“)[pQE(}‘) PQE(IJ)] (30)
-0 n
where n = -E/kT is an arbitrary energy level, and ap is the Thomson rate

coefficient (Thomson [40]). From (30) it is clear that once IE (29) is

solved for the ng(A), a bi-cubic spline quadrature will yield a.
To solve the quasi-equilibrium integral equation (29) we impose

S . .
the boundary conditions: ng(A <o) =1, pQE(A > €) = 0 yielding,

[3 o

J pge(u) F(A,u)du - ng(A) J F(A,u)dpu = J F(A,u)du (31)
[o] -0

When (31) is discretized the result is a system of algebraic equations
similar to (21) which can be solved either by iterative methods (SSOR) or
direct techniques (Gaussian elimination), due to the much smaller size
coefficient matrix o in the quasi-equilibrium case. As an example of

the type of results obtained, we show in figures 3 and 4 the quasi-

equilibrium distribution ng(A) and recombination rate a/aT, respectively
for the energy-transfer mechanisms of charge-transfer, hard-sphere and
polarization collisions. We should also mention that, in addition to the
smaller size, the quasi-equilibrium coefficient matrix is also symmetric
- a fact which greatly helps in the numerical solution of (29). We have
not discussed the numerical solution of the PIDE (28) in the same detail
as that of (8), even though they are equivalent, because it results in a
system of algebraic equations with a non-symmetric, nonpositive-definite
coefficient matrix 4 - a problem much more difficult than (17). Finally,
the quadrature rule used to determine the weights and pivots used in
solving the quasi-equilibrium integral equation (31) were the same
nonlinear Simpson's rule weights and pivots of Bates and Menda$ [8]
discussed earlier. We conclude section II with a summary of the types of
1IE's found in the literature.
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Figure 3: Quasi-equilibrium distribution function pQE(A) for the case
of a = 1/3 (m1=m2=m3), and energy-change mechanisms of charge-
transfer (CX), hard-sphere (HS) and polarization (PL) collisions.
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Figure 4: Quasi-Equilibrium recombination rate coefficient (a/aT) versus

mass ratio parameter (a) for energy-change mechanisms of charge-
transfer (CX), hard-sphere (HS) and polarization (PL) collisions.
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Numerical Solution of [E's
' The three basic types of integral equations are Fredholm

equations,

b
JMLwNﬂW=SUﬁh)
a

and Volterra equations of the first kind,

t
jﬂmﬂﬂﬂ®=gu)
o

and second kind,

t
NU-JKUJHBMs=ﬁU
o)

where g i3 a known function, f is the unknown function and K is the
kernal of the integral equation. We have already encountered Fredholm
equations and Volterra equations of the 2nd-kind in (29) and (8),
respectively. We will not encounter Volterra integral equations of the
1st-kind in this lecture. However, upon discretization, all three types
of IE's above reduce to a problem of solving a system of linear algebraic
equations. The particular technique used to solve the algebraic equa-
tions depends upon the structure of the coefficient matrix 4, which in
turn depends on the behavior of the kernal K. Recalling our steps in the
numerical solution of PIDE's, we find that steps (ii) - (iv) also provide
a good prescription for the numerical solution of one-dimensional IE's.
We have been brief in our summary of the numerical treatment of integral
equations due again to the breadth of the area. For a complete introduc-
tion to the numerical solution of IE's see Baker [2] and Delves and
Mohamed (16]. For an excellent account of Volterra equations see Linz

- (3u].
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III. Approximate Treatments of lonic Recombination
As stat& in the introduction, until the advent of super-
computers, the direct solution of the PIDE's arising from the Boltzmann

equation treatment of ionic recombination, was generally avoided due to
the difficulty in solving systems of algebraic equations composed of 1000
or more equations and unknowns. The paper (Bates and Menda$ [9]) which
originally derived the coupled PIDE's\(B] solved them by a power series
expansion in Amfp. which converged slowly with gas density and whose
coefficients were difficult to compute in general. As discussed in
section II, the slow convergence rate of the power series solution of (8)
is directly related to the ill-conditioned nature of the coefficient
matrix 4 in (21). Hence other methods of solving for the recombination
rate a are needed. One such method which has proven quite successful is
the Monte Carlo simulation of ion-ion recombination processes (Bates and
MendaS {10], and Morgan et al. [38]). We will not cover this type of
calculation in this lecture since our main interest is in discussing
techniques which lead to PDE's or PIDE's.

In this section we will discuss the Debye-Smoluchowski and
diffusion equation approaches to ionic recombination. The starting point
for the Debye-Smoluchowski equation is the macroscopic continuity
equation for the number density of ion pairs, undergoing recombination of
time t and separation R,

dn(R,t) an(R,¢t)

m T+ vel@®,t) =0 (32)

for R > S a sink radius, and is solved subject to the asymptotic boundary
condition n(R » »,t) = N(X*) N(Y") where N is the equilibrium number

density. The net current J(R,t) of ion pairs expanding at time t is,
J(R,t) = -D ¥ n(R,t) + (K/e)(F V) n(i,t) (33)

where V(R) is the interaction potential between x* and Y™, and D, K are
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the relative diffusion and mobility coefficients of X" and Y~ in a back-
grouﬁd gas Z. 1fhe introduction of a sink, with an assigned local three-
body reaction rate aq at the surface, allows one to avoid dealing with
the complicated collision kernels F(A,u;r) and full PIDE nature of (8) by
replacing the problem with a pnenomenclogical model. After substituting
the current (33) into (32), and discretizing, the problem reduces to a
boundary value problem involving a time-dependent diffusion equation in
R. An example of the resultant solution is given in figure 5 which shows
the time-dependent number density of ion pairs n(R,t) versus R for a
specified sink radius. For further details on the Debye-Smoluchowski
equation and ion-ion recombination see Flannery and Mansky (29].
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Figure 5: Solution of Debye-Smoluchowski equation for p = n(r,r)/N°

exp(-V/kT) r = R/S-1, v = Dt/Sz. T ranges (from the top curve
down) from 0.05, 0.5, 1, 2, 5, 10, 20, 30 to 100. The lowest
curve is the steady state (equilibrium) distribution. Assigned

parameters are S = 0.5, a,/ane = 0.5 (see [29] for details).
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Diffusion equations in energy have also been used to model ionic
recombination fince the work of Pitaevskil [39]. In fact, the quasi-
equilibrium theory of ion-ion recombination discussed in section II can
be considered a Markov process (Flannery [19]). Writing the quasi-
equilibrium integral equation (29) in terms of energies E, E1 (with the
time-dependence reinserted - see Flannery [30], p. 17),

- N(2) J-n(Ei,t) K(E,,EE, - n(E,t) J-K(E,si)dsl (34)
-E -
S

an(E,t)
ot

Combining the integrals in (34) and Taylor series expanding the resultant
integrand results in the Fokker-Planck equation,

an(E,t) a 1 62
et [A1n(E,t)] + 56—85 [A2 n(E,t)] (35)

where,

n
An = N(2) J (EZr - Ei) K(E,Ef)dEf
-D

and one assumes that the energy-transfer between the ion-pairs and third
bodies is small so that the Taylor series expansion of (34) converges.
This necessarily limits the diffusion model to electron-ion recombination
processes. AsS an example of the type of results obtained by the energy
space diffusion equation, we show in figure 6 the steady-state distribu-
tion p(A) obtained by Pitaevskii compared with the corresponding results
of the quasi-equilibrium theory. While Pitaevskii's treatment only
becomes accurate in the limit of electron-ion recombination, it's
similarity with the quasi-equilibrium results in figure 6, for the case
of equal mass constitutents, is striking. For a more complete discussion
of energy space diffusional theories of termolecular recombination see
Flannery [26].
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Figure 6: Comparison of quasi-equilibrium distribution (___) and
Pitaevskii's distribution (---_ for the case of a = 1/3 and
charge-transfer collisions.

IV, Conclusions and General References

In this lecture we have provided a detailed prescription for
handling numerically the coupled partial integro-differential equations
which arise from the Boltzmann equation treatment of ionic recombination.
We have also given a brief summary of some of the approximate methods of
treating ionic recombination. The reason for our detailed treatment of
PIDE's is that there is little in either the physics or mathematics
literature on how to tackle the problem of solving numerically a system
of mult dimensional PIDEs (l.e., systems with more than 1 independent
variable). In this lecture we have tried to fill this gap.

Our main conclusion is that iterative techniques are numerically
the most efficient way of solving the large systems of algebraic equa-
tions which result from PIDE's like (8). While this is not entirely
unexpected, it is the first time techniques like the SSOR have been
applied to problems in ionic recombination. With resolution of the
problem of the ill-conditioning of « in (21), a number of long-standing
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problems in chemical physics will be able to be solved. We end this
lecture with a*list of general references which we have found useful on
the subject of solving numerically IE's and PIDE's.

- Baker, C. T. H., 1977, The Numerical Treatment of Integral Equations,

Oxford University Press.

- Cullum, J. K., and Willoughby, R. A., 1985, Lanczos Algorithms for
Large Symmetric Eigenvalue Computations, Vol. I, Theory, Vol, II,

Programs, Birkh;user (Boston).

- Delves, L. M. and Mohammed, J. L., 1985, Computational Methods for
Integral Equations, Cambridge University Press.

-Fﬂ“mm,k,ud$MmJ.&,Wﬂ,MMJ.WmmAmw.J,
826-46.

- Golub, G. H., and van Loan, C. F., 1983, Matrix Computations, Johns

Hopkins University Press,
- Hageman, L. A., and Young, D. M., 1981, Applied Iterative Methods,

Academic Press.
- Linz, P., 1985, Analytical and Numerical Methods for Volterra Equations

SIAM Press, (Philadelphia).

- Young, D. M., 1971, Iterative Solution of Large Linear Systems,
Academic Press.
- Young, D. M., and Jea, K. C., 1980, Lin. Algebra Appl. 34, 159-94,

- Wilkinscn, J., 1965, The Algebraic Eigenvalue Problem, Oxford Univ.

Press.
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